Fossile Rohstoffe sind derzeit die tragende Säule unserer modernen Industriegesellschaft. Die Abhängigkeit von einer sicheren Energieversorgung machte bisher die Nutzung fossiler Ener-gieträger erforderlich. So sind die Anteile von Erdöl (34 %), Erdgas (24 %) und Kohle (30 %) am globalen Primärenergieverbrauch (ohne Biomasse) mit Abstand am Größten (BGR 2011).
Vor diesem Hintergrund ist es aufschlussreich, die derzeitige Nutzung der fossilen Rohstoffe näher zu betrachten. Wie in Abb. 1 dargestellt, werden von den jährlich geförderten 4 Mrd. Tonnen Erdöl etwa 50 % im Mobilitätssektor, 32 % für die Wärmebereitstellung und rund 8 % für die Stromerzeugung verbraucht. Lediglich rund 10 % werden stofflich in der che-mischen Industrie eingesetzt (BASF 2007, Marshall 2007).
Der steigende Energiebedarf der Welt und der drohende Klimawandel stel-len die gegenwärtige Industriegesellschaft vor große Herausforderungen. Um das von der Staatengemeinschaft akzeptierte 2 °C-Ziel einhalten zu können, müssen insbesondere die hohen, aus der Energiebereitstellung resultierenden CO2-Emissionen vermieden werden. Die Dekarbonisie-rung des Energiesektors durch die Umstellung auf Erneuerbare Energien und die Implementierung einer strombasierten Infrastruktur sind dabei eng miteinander verzahnt. Windenergie wird vermutlich den größten Teil des zukünftigen Energiemixes stellen. Der daraus erzeugte Strom kann entweder gespeichert oder aber in zentralen Anlagen zur Elektrolyse von Wasser verwen-det werden. Aus Wasserstoff und Kohlenstoffdioxid können dann Produkte wie Methan oder flüssige Kohlenwasserstoffe synthetisiert werden. Mit den so erzeugten Energieträgern lassen sich auch die Sektoren Wärme, und Mobilität sowie die Grundstoffindustrie auf eine regenerative Basis stellen. Die dargestellten Ansätze zeigen, dass eine nachhaltige Industriegesellschaft prinzipiell möglich ist und keine ferne Vision bleiben muss.
Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
Quelle: | Depotech 2012 (November 2012) |
Seiten: | 8 |
Preis: | € 4,00 |
Autor: | M.Sc. Dipl.-Ing. (FH) Sebastian Egner Dipl.-Ing. Wolfgang Krätschmer Prof. Dr.-Ing. Martin Faulstich |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Netz- und sozialverträgliche Umstellung auf erneuerbare Energien
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2023)
Durch den unermüdlichen Einsatz derjenigen, die sich für eine Energiewende einsetzen bzw. eingesetzt haben, können wir aktuell drei positive Nachrichten in den Vordergrund meines Vortrags stellen. Wenn wir die vorhandene Technik in der richtigen Form kombinieren, sind wir nun in der Lage, eine kostensenkende und sozialverträgliche Energiewende umzusetzen.
Batterien aus der E-Mobilität in Second-Life-Anwendungen
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In der Abfallhierarchie Die gängigen Konzepte, bei denen preisgünstige Batterien technisch, aber auch wirt-schaftlich sinnvoll eigesetzt werden können. Diese Anwendungen konzentrieren sich alle primär auf den Bereich stationärer Speicher. Die genaueste, jedoch zeitlich aufwendigste Methode, ist ein Zyklentest. Hierbei wird die Batterie vollständig entladen und anschließen mit einer geringen Ladeleistung wieder vollständig geladen. Dabei wird der eingebrachte Strom gemessen.
Entwicklung der Versorgungssicherheit Gas im Kontext der geplanten rechtlichen und regulatorischen Änderungen: Sind wir aus volkswirtschaftlicher Sicht noch richtig unterwegs?
© wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH (7/2016)
Die Verlässlichkeit unserer Energieversorgung ist ein hohes Gut, dessen Störung mit erheblichen Auswirkungen auf
die gesamte Volkswirtschaft verbunden ist. Die Kosten der Energieversorgung einschließlich der Folgen für Umwelt
und Gesundheit müssen zudem in einem akzeptablen Rahmen bleiben, damit eine Volkswirtschaft wettbewerbsfähig
und nachhaltig sein kann. Als Zielvorgaben sollten die für eine sichere Energieversorgung gewählten Maßnahmen möglichst geringe Kosten mit einer hohen Umweltverträglichkeit verbinden und Ausfälle bzw. deren schädliche Folgen für die Volkswirtschaft sicher vermeiden. Erfüllt die Versorgungssicherheit für Gas in Deutschland diese Anforderungen oder geht es vielleicht auch besser? Mit dieser Frage befasst sich der folgende Artikel.
Flexibilisierung und bedarfsorientierter Fahrplanbetrieb: zur marktgerechten Stromerzeugung in Biogas-Bestandsanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2016)
Der Beitrag untersucht handlungsleitende Rahmenbedingungen für Betreiber bei der weiteren Entwicklung der Stromerzeugung aus Biogas in der Zukunft der Energiewende.
PV, Wind und Power-to-Gas - Wozu benötigen wir noch Biomasse?
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2015)
Der Ausbau von PV und Windenergie schreitet mit beeindruckenden Lernkurven voran. Auch Bioenergieanlagen haben eine deutliche technologische Entwicklung erfahren, konnten aber besonders im Biogasbereich durch die (notwendigerweise) gestiegenen, technologischen Anforderungen keine positive Lernkurve entwickeln. Zusätzliche Kostensteigerungen entstehen, wenn Bioenergie bedarfsgerecht bereitgestellt wird. Die Nachhaltigkeit der Konzepte muss hinterfragt werden. Bioenergie leistet aber einen wichtigen Systembeitrag und kann dies auch zu niedrigeren Kosten als alternative Technologien tun. Biogas ist ein wichtiger Partner von Power-to-Gas. Gemeinsam sind sie unverzichtbar für eine EE-Vollversorgung. Bioenergie als integraler Bestandteil der Landwirtschaft bietet Lösungen für eine Steigerung der Nachhaltigkeit.