Regenerative thermal oxidizers based on the pebble-heater technology

Regenerative thermal oxidizers are used for cleaning the exhaust gas of different industrial furnaces. They are more and more demanded as the environmental regulations become more strict. On the other hand, there is a steady effort to develop systems with lower investment and especially operational costs.

The new Pebble-Heater technology with annular beds and radial fluid flows has been used as a basis for developing a system of a regenerative thermal oxidizer which can meet the market requirements. Theoretical studies and numerical simulations have shown that an extremely effective heat transfer at Péclet numbers around Pe=30 in granular beds of natural materials/minerals (like quartz-gravels, volcanic stones or fire-clay) is possible. Temperature gradients of more than 20 K/cm have been realized, so that the required bed thickness may be as low as 35 cm. That also results in a lower pressure drop. Those studies have shown that under optimized conditions the natural materials/minerals are much more effective than artificial forms (ceramic rings, saddles, honeycombs...) developed especially for heat regenerators. The price ratio between the two is more than 1:100. The realized facilities have justified the expectations. A heat recovery degree of more than 98% has been achieved, with a total pressure drop of about 18 mbar. The next best system on the market has at least a 100% higher energy (gas/oil) consumption and a 50% higher fan power consumption. Some other characteristics of the new system have also shown important improvements for the process. The bigger volume of the hot chamber (reaction zone at 800°C) results in a longer residence time (1,5 - 1,7 seconds), so that the destruction of different pollutants (aldehyds, benzols, phenols...) and carbon-monoxide is more effective. The measured emission values are far beyond the limits set by the regulation authorities. The realized facilities have capacities in the range of 15.000 - 45.000 m3 STP/h. The next development stages are a scale-down (1.000 - 5.000 m3 STP/h) and a scale-up (over 100.000 m3 STP/h) of the existing technology. It is intended to substitute some very expensive catalytic facilities with the new system. With the extremely high heat recovery degree, the reaction zones at 800°C - 1000°C do not cause high operational costs any more. Lowering the reaction temperature (the main advantage of the catalytic facilities) is no longer a decisive parameter for the facility design.

Veröffentlicht in: Umweltpraxis No. 5/2001, GWV Fachverlage GmbH, Wiesbaden 2001



Copyright: © OTH Amberg-Weiden
Quelle: Veröffentlichungen 2003 und ältere (August 2005)
Seiten: 10
Preis: € 5,00
Autor: Dr. Dragan Stevanovic
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Erfahrungen bei der Beratung von Vergärungs- und Kompostierungsanlagen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2024)
Die Verwendung von Biogut- und Grüngutkompost ist eine Möglichkeit, Nährstoffdefizite im Ökolandbau zu vermeiden sowie die Bodenfruchtbarkeit zu erhalten und sogar zu steigern.

Grundstrukturen und Gütekriterien eines Klimawandelfolgenrechts
© Lexxion Verlagsgesellschaft mbH (2/2024)
Der Klimawandel geschieht. Und ganz unabhängig davon, wie stark wir ihn bremsen werden, spüren wir schon heute seine unabwendbaren Folgen und werden in Zukunft noch stärker mit ihnen zu kämpfen haben.

CDR-Technologien auf dem Weg in die Klimaneutralität
© Lexxion Verlagsgesellschaft mbH (2/2024)
Der Klimawandel nimmt besorgniserregende Ausmaße an. Zugleich wird klimaneutralität versprochen. Im Paris-Abkommen nur vage in Aussicht gestellt, soll ausweislich Art. 2 des europäischen Klimagesetzes für die Union im Jahr 2050 und nach § 3 Abs. 2 KSG für Deutschland bereits 2045 bilanziell Klimaneutralität erreicht sein.