Innovative biomass power plant based on pebble-heater technology and hot air turbine

The use of biomass for combined heat and power (CHP) production becomes increasingly important. On the one hand it substitutes the usage of fossil fuels like coal, oil or natural gas; on the other hand it is neutral regarding the CO2-emissions into the atmosphere. That is the reason why many countries, especially the EU and the USA have launched very ambitious programs for increasing the usage of biomass, especially for power production.

The European Commission ´s White Paper sets out a Community Strategy and Action Plan to increase RES (regenerative energy sources) market penetration, to reduce energy dependency and to reduce greenhouse gas emissions in order to meet the Kyoto objectives. One of the actions is to install 10,000 MWth of CHP biomass plants till the year 2010. That action will help achieve the objective of 23.5% of electrical power produced from RES. With an estimated annual 14,000 MW of installed power generation capacity worldwide, biomass power is the largest source from non-hydro renewable electricity in the world. Currently, the USA are the greatest bio-power producer with a capacity of 7,000 MW. Approximately 80% of this total are generated in the industrial sector, i.e. in relatively big units in the pulp and paper industry. The US Department of Energy (DoE) has started several programs in order to contribute to a further increase in bio-power (e.g. co-firing, gasification, energy crops etc.). One program deals with the development of small modular systems in the size of 10 to 5,000 kW. Those systems are expected to be attractive with regard to deregulation and the consumers’ free choice of who they want to be their power supplier and what they want the contents of the power product to be. Nevertheless, DoE expects that the biggest markets for biomass power generation worldwide will be the developing countries. China and India are considered to be the prime candidates, followed by Brazil, Malaysia, Philippines and Indonesia. They all meet several criteria, such as rapid economic growth, burgeoning demand for electricity, mounting environmental problems, need for rural electrification and significant agricultural/forestry residues.

Veröffentlicht in: PowerGen Europe, Brussels 2001



Copyright: © OTH Amberg-Weiden
Quelle: Veröffentlichungen 2003 und ältere (August 2005)
Seiten: 11
Preis: € 5,50
Autor: Dr. Dragan Stevanovic
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau der Wasserstoffinfrastruktur in Deutschland

Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens - ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.

Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit