As a result of intensive sponsorship and both scientific and commercial research efforts, biologically degradable polymers (BDP) have been developed in the last few years to be ready for practical utilisation. The application of BDP for packaging purposes was considered to be the most practical area for their use.
BDP based on renewable resources are considered in the regulations of the German Packaging Ordinance [VerpackV 1998] and in the Biowaste Composting Ordinance [BioAbfV 1998]. It is possible to carry out a biodegradability test according to a DIN standard [DIN V 54 900 1998] to determine their compostability. The legislation of most other countries does not distinguish so sharply between renewable and fossil-based BDP, as they have the same properties as being biodegradable. On the other hand, only BDP based on renewable resources made by using agricultural materials guarantee a closed material cycle. This closed cycle may be explained as follows: a plant grows, and a product is made out of this plant, e.g. starch. This starch is used to manufacture a tray, for example, and the tray is then added to the organic waste after use. The organic waste is composted, thus gaining compost as a fertiliser for the plant growth.
BDP based on renewable resources may achieve almost carbon dioxide neutrality (“zero emission”) under optimal conditions, since only the equivalent amount of carbon dioxide is emitted during the composting that was bound during the growth of the respective plant. Raw materials for the production of biologically degradable polymers are renewable vegetable or animal resources and fossil/oil-based compounds. Basic materials for the production of biopolymers can be derived especially from such cultivated crops as potatoes and maize, as well as from by-products (whey permeate) of several industrial processes. Blending of fossil-based and renewable materials is done to achieve or improve the quality of the products. Most of the biopolymers need several additives influencing processing and practical properties. Biodegradable polymeric materials and auxiliary plastics have different application ranges. Polymeric materials are characterised by their solid-state properties as the auxiliary plastics have mostly a liquid or pasty consistency [Tänzer 2000].
| Copyright: | © Bauhaus-Universität Weimar - Professur für Abfallwirtschaft |
| Quelle: | Professur für Abfallwirtschaft (April 2005) |
| Seiten: | 17 |
| Preis: | € 17,00 |
| Autor: | Dr.-Ing. Matthias Klauß Prof. Dr. Ing. habil. Werner Bidlingmaier |
| Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Talsperren - Essenziell fuer die Minderung der Klimawandelfolgen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Die Bedeutung von Talsperren und Wasserspeichern wird in diesem Beitrag im Kontext des Klimawandels und der steigenden globalen Wassernachfrage betrachtet. Die Diskrepanz zwischen Wassernachfrage und verfügbarer Speicherkapazität wächst aufgrund von Klimawandel, Bevölkerungswachstum und Rückgang der Süßwasservorräte. Viele große Talsperren weltweit sind über 50 Jahre alt, was zum Teil Bedenken hinsichtlich ihrer Standsicherheit und Verlandung des Stauseevolumens aufwirft. Die Verlandung ist ein weltweit zunehmendes Problem. Ohne nachhaltige Maßnahmen werden bis 2050 viele Stauseen im Mittel bis zu 50 % verlandet sein. Eine nachhaltige Wasserbewirtschaftung und Maßnahmen zur Minderung der Stauraumverlandung angesichts eines wachsenden globalen Wasserspeicherbedarfs sind unabdingbar.
Ressourcenorientierte Sanitärsysteme für nachhaltiges Wassermanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Abwassersysteme stehen infolge des Klimawandels und der Ressourcenknappheit vor Herausforderungen. Ressourcenorientierte Sanitärsysteme (NASS) ermöglichen durch eine getrennte Erfassung einzelner Abwasserteilströme (z. B. Grauwasser, Urin) eine gezielte Behandlung und Ressourcenrückgewinnung vor Ort. Zudem können sie bestehende Infrastrukturen entlasten. Praxisbeispiele verdeutlichen aktuelle Anwendungen von NASS. Das Projekt BeReit zeigt, dass eine Urinseparation den Belüftungsbedarf und Spurenstoffemissionen von Kläranlagen reduzieren kann.
Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.