Stand der Technik für Kompostwerke

Allen Kompostierungstechniken liegen grundsätzlich dieselben wissenschaftlichen Erkenntnisse zugrunde. Die Mikroorganismen, die für die aerobe Umsetzung der organischen Substanzen verantwortlich sind, benötigen optimale Lebensbedingungen, wie ein ausreichendes Nährstoffangebot, die Versorgung mit Sauerstoff und Wasser sowie ein ihren Bedürfnissen entsprechendes Umgebungsmilieu.

Entscheidend für den Rotteverlauf ist die Struktur des Rottegutes. Nur bei einem ausreichenden Luftporenvolumen werden die Mikroorganismen genügend mit Sauerstoff versorgt, ist ihre hohe Aktivität und damit eine optimale Rotte gewährleistet. Als weiterer wichtiger Parameter ist der Wassergehalt des Rottegutes zu sehen, da die Mikroorganismen ihre Nährstoffe nur in gelöster Form aufnehmen können. Er sollte einen Mindestgehalt von 40 % während der Intensivrotte nicht unter- und einen Höchstgehalt von 65 % nicht überschreiten. Niedrigere Wassergehalte hemmen die Aktivität, höhere grenzen das für die Sauerstoffzufuhr verfügbare Luftporenvolumen zu sehr ein.  Das Nährstoffangebot ist bei der Kompostierung von Haushaltsabfällen mit oder ohne Papier und/oder Grünabfälle grundsätzlich gegeben. Die Hygienisierung des Rottegutes ist durch eine intensive Rotteführung, bei der Temperaturen von über 60 °C während mehrerer Tage erreicht werden, gewährleistet.
Zur Kompostierung großer Mengen separat erfasster Bioabfälle sind technische Anlagen erforderlich. Dabei ist in dezentrale und zentrale Anlagen zu unterscheiden.
Als Schnittstelle kann eine Einwohnerzahl von maximal 10.000 Einwohnern oder ein maximaler Durchsatz von 1.000 t/a angesetzt werden. Diese Anlagen werden meist von Gartenbau- oder Landwirtschaftsbetrieben mit eigenem Personal, im Maschinenring organisierten Maschinenparks und anschließender Eigenverwertung der Komposte betrieben.
 Die Kompostierung von Grünabfällen wird in vielen Gebietskörperschaften dezentral durchgeführt; bei der Bioabfallkompostierung sind dezentrale Systeme seltener. In Tabelle 1 sind die Vor- und Nachteile der dezentralen Verfahren dargestellt.
 



Copyright: © Thomé-Kozmiensky Verlag GmbH
Quelle: Abfallwirtschaft für Wien (2004) (Dezember 2004)
Seiten: 42
Preis: € 0,00
Autor: Prof. Dr. Ing. habil. Werner Bidlingmaier
o. Prof. Dr.-Ing. Martin Kranert
 
 Artikel nach Login kostenfrei anzeigen
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.