Behandlung von Steinwolle zur stofflichen Verwertung als Sekundärzumahlstoff in der Baustoffindustrie

Durch den Einsatz von künstlichen Mineralfasern (KMF) als Dämmstoff im Bausektor
fallen diese bei Rückbaumaßnahmen als Abfälle an. Die Deponierung, als vorrangiger
Weg der Entsorgung in Österreich, gestaltet sich aufgrund der niedrigen Rohdichte und geringen Formbeständigkeit des Materials als herausfordernd. Das Projekt 'RecyMin' beschäftigt sich daher mit dem Recycling von KMF und verfolgt dabei die verschiedensten Lösungsansätze, von der innovativen Deponierung bis zum Einsatz in der Zementindustrie (Sattler et al. 2020).

Aufgrund der geänderten rechtlichen Rahmenbedingungen durch das bevorstehende Deponierungsverbot bei Verfügbarkeit eines geeigneten Recyclingverfahrens, wurden die stofflichen Verwertungsmöglichkeiten in den Fokus gerückt. Am Lehrstuhl für Thermoprozesstechnik (TPT) an der Montanuniversität Leoben (MUL) wird daher an der Entwicklung von geeigneten Recyclingwegen im Bereich der Rückführung in die Mineralwolleindustrie und der stofflichen Verwertung in anderen Industrien geforscht. Dabei hat die Behandlung von Steinwolle zur stofflichen Verwertung als Sekundärzumahlstoff in der Baustoffindustrie höchste Priorität. Durch eine geeignete thermische Behandlung unter Zugabe von Korrekturstoffen soll eine alternative Bindemittelkomponente verfügbar gemacht werden. Im Rahmen von ersten Vorversuchen im Labormaßstab konnte die Materialeignung

bei entsprechender Konditionierung nachgewiesen werden.

In Gebäuden kommen künstliche Mineralfasern (KMF) als Dämmstoff zum Einsatz. Eine Unterscheidung der Mineralwolle in Stein- und Glaswolle erfolgt allgemein nach rohstofflicher bzw. chemischer Zusammensetzung. Dabei wird Steinwolle (SW) aus den Primärrohstoffen Diabas, Basalt und Dolomit hergestellt. Im Gegensatz dazu wird Glaswolle (GW) aus bis zu 80 % Altglas sowie den Primärrohstoffen Quarzsand, Soda und Dolomit produziert. Dazu werden die verschiedenen Einsatzmischungen bei 1300 bis 1600 °C geschmolzen. Als Energieträger wird vorwiegend Koks für Steinwolle und Erdgas für Glaswolle eingesetzt. Beim Zerfaserungsprozess kommen Binde- und Schmelzmittel aus Kunstharzen und Ölen zum Einsatz. Diese dienen der Faserbindung und zur Ausbildung von hydrophoben Eigenschaften. Steinwolle benötigt dabei anteilsmäßig eine geringere Menge als Glaswolle (Müller 2019). Die gesetzlichen Rahmenbedingungen beim Gebäuderückbau durch die Recycling-Baustoffverordnung (RBV 2015) haben dazu geführt, dass gefährliche Mineralwolleabfälle als Störstoffe getrennt gesammelt werden müssen. Weiters werden sie u.a. entsprechend ihrer biologischen Halbwertszeit in 'alte' und 'neue' Mineralwolleabfälle unterschieden. Aufgrund der Schwierigkeit der Unterscheidung wurden sämtliche Mineralwolleabfälle in der Regel unter der Schlüsselnummer SN 31437 'Asbestabfälle, Asbeststäube' entsorgt. Daher kann die aktuelle Abfallmenge aus Sanierung und Rückbau nur abgeschätzt werden und erst durch die Änderung der Abfallverzeichnisverordnung, mit der Schaffung eigener Schlüsselnummern für Mineralwolle, im Detail erhoben werden. Aktuell wird von einem Mineralwolleabfallaufkommen in Österreich von 30.000 bis 40.000 t/a bei einem angenommenen Verteilungsschlüssel von 75 % Stein- und 25 % Glaswolle ausgegangen. Aufgrund von steigenden Gebäudeanforderungen nimmt die Produktionsmenge an Mineralfasern stetig zu und bildet, gemessen am Volumen, das am häufigsten eingesetzte Dämmmaterial in Europa (Müller 2019).



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Recy & Depotech 2022 (November 2022)
Seiten: 6
Preis: € 3,00
Autor: Klaus Doschek
Christiane Mimra
Theresa Sattler
Florian Steindl
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.