Exploring techno-environmental pathways how urban biorefineries for organic waste valorization potentially contribute to the design of future urban bioeconomy systems with net-positive impact

When striving to understand the complexity of driving forces on energy and material flows within cities and of cities in interrelation with their surroundings the multidisciplinary approach of framing, describing and specifying the regionalized urban metabolism is the state-of-the art tool which is currently further gaining in significance and scientific and political attention (Sanches and Bento 2020). There is for example the household metabolism for heating fuels which constitutes a major fraction of urban energy flows from the input side, which has to be reduced in the future to decouple from import dependency and from greenhouse gas intensive energy systems.

In times of energy crisis the transformation towards circular urban bioeconomy systems supports in meeting sustainability and climate targets. The urban bioeconomy potentially contributes to the safeguarding of services of general interest by providing carbon neutral heat and electricity and by partially covering the demands for fertilizers and soil amendments. The product groups which can be produced and recovered from urban waste biorefineries are including a broad range of materials and products such as soil amendments, solid bio-fuels, refusederived fuels, insect proteins, biogas and purified biomethane, carbon materials and panel boards from woody fractions. The study explores four scenarios of different biorefinery platforms with the same feedstock mix of 130,000 t of fresh matter input with 85,000 t of source separated organic waste from households and 45,000 t of woody fraction of garden and park waste. All four urban biorefineries rely on the same systems of industrial composting in rotting tunnels and of anerobic digestion. But the four scenarios also differ i.) in their downstream valorization pathways for produced biogas, ii.) in production of further complementary by-products such as carbons substrates, iii. in integration of further key technologies such as methanation of hydrogen and syngas and iv. in valorization of former waste flows such as material use of screening residues instead of energetic recovery.



Copyright: © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben
Quelle: Recy & Depotech 2022 (November 2022)
Seiten: 6
Preis: € 3,00
Autor: Jakob Hildebrandt
M. Will
Dr. Alberto Bezama
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau der Wasserstoffinfrastruktur in Deutschland

Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens - ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.

Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit