Für eine standardisierte Probenahme von Mikroplastik in einem Flusssystem sind mehrere Faktoren, darunter die hydrologischen Bedingungen des Gewässers (z. B. Wasserdichte, Wind, Strömungen, Wellen) aber auch zeitliche und geografische Faktoren, die durch Flussmorphologie und die meteorologische Situation bestimmt werden, zu berücksichtigen. Im Rahmen des EFRE ko-finanzierten Projektes Tidy-Up wurden drei unterschiedliche Methoden (Netzmethode, Kaskadenpumpmethode und Sedimentationsbox) hinsichtlich ihrer Praktikabilität, Benutzerfreundlichkeit, Fehleranfälligkeit und Personalbedarf getestet.
Flüsse gelten als Haupteintragspfad für die Meeresverschmutzung, und immer mehr Mikroplastikpartikel (<5 mm) verschmutzen unsere Umwelt. Schätzungen zeigen, dass so genanntes primäres Mikroplastik zwischen 15 und 31 % des Mikroplastiks in den Ozeanen ausmacht. Ein weitaus größerer Anteil (69-81 %) wird jedoch Partikeln, die bei der Zersetzung größerer Plastikobjekte wie Plastiktüten oder Plastikflaschen entstehen, zugeschrieben (Boucher 2017). Trotz etlicher Studien zum Vorkommen von Mikroplastik in Flüssen sind derartige Analysen noch ein junges Forschungsgebiet mit vielen Herausforderungen. Eine der Hauptschwierigkeiten liegt in einer zuverlässigen repräsentativen und vergleichbaren Probenahme. Für eine standardisierte Probenahme von Mikroplastik in Flüssen sind mehrere Faktoren, wie hydrologische Bedingungen des Gewässers aber auch zeitliche und geografische Faktoren, die durch Flussmorphologie und die meteorologische Situation bestimmt werden, zu berücksichtigen. Die meisten Forschungsarbeiten über Mikroplastik konzentrieren sich auf die Menge und die Zusammensetzung von Mikroplastik, aber die Komplexität von Mikroplastik und die fehlende Harmonisierung der Probenahmemethoden erschweren den Vergleich verschiedener Studien (van Emmerik & Schwarz 2020). Eine Standardmethode für die Probenahme von Mikroplastik in Flüssen fehlt bisher. Die Bewertung möglicher Gefahren durch Mikroplastik erfordert jedoch schnelle, zuverlässige und zumindest repräsentative Probenahme-, Probenaufbereitungs- und Nachweismethoden, die schließlich harmonisiert werden. Nur dann ist ein Vergleich der Ergebnisse möglich und es können Vermeidungsstrategien oder regulative Maßnahmen zur Verringerung des unbeabsichtigten Eintrags von Kunststoffen in die Umwelt diskutiert werden (Bannick et al. 2019).
| Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
| Quelle: | Recy & Depotech 2022 (November 2022) |
| Seiten: | 2 |
| Preis: | € 1,00 |
| Autor: | Dipl.-Ing. Gudrun Obersteiner Dipl.-Ing. Sabine Lenz Johannes Mayerhofer |
| Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Europäische Rechtsvorgaben und Auswirkungen auf die Bioabfallwirtschaft in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Bioabfälle machen 34 % der Siedlungsabfälle aus und bilden damit die größte Abfallfraktion im Siedlungsabfall in der EU. Rund 40 Millionen Tonnen Bioabfälle werden jährlich in der EU getrennt gesammelt und in ca. 4.500 Kompostierungs- und Vergärungsanlagen behandelt.
Vom Gärrest zum hochwertigen Gärprodukt - eine Einführung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Auch mittel- bis langfristig steht zu erwarten, dass die Kaskade aus anaerober und aerober Behandlung Standard für die Biogutbehandlung sein wird.
Die Mischung macht‘s - Der Gärrestmischer in der Praxis
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Zur Nachbehandlung von Gärrest aus Bio- und Restabfall entwickelte Eggersmann den Gärrestmischer, der aus Gärresten und Zuschlagstoffen homogene, gut belüftbare Mischungen erzeugt. Damit wird den besonderen Anforderungen der Gärreste mit hohem Wassergehalt begegnet und eine effiziente Kompostierung ermöglicht.