Physikalische Grundlagen für nachhaltiges Sedimentmanagement von Fließgewässern

Die Planung ökologischer Aufwertungen von Fließgewässern und ihrer Auen erfordert ein effektives Sedimentmanagement, um nachhaltige morphodynamische Rahmenbedingungen zu erreichen. Interdisziplinäres Verständnis der planenden Instanzen ist Grundvoraussetzung für ein integrales Sedimentmanagement. Dieser Artikel fasst physikalische Grundlagen der fluvialen Morphodynamik zusammen, die den interdisziplinären Dialog zwischen Fachleuten aus den Disziplinen Biologie, Ökologie, Flussgebietsmanagement, Projektplanung, Wasserbau und der Behörden vereinfachen soll.

1 Einführung in die Fließgewässerhydraulik und die Morphologie

Natürliche Fließgewässer wirken hydraulisch und morphologisch gesehen abwechslungsreich, spannend und dynamisch (Bild 1a). Im modernen Europa sind natürliche Fließgewässer allerdings rar geworden und es dominieren anthropogen überprägte Systeme (Bild 1b). Vor allem aufgrund der Wasserrahmenrichtlinie werden diese Fließgewässer heute oft künstlich, und teilweise mit großem Aufwand, als naturnahe Fließgewässer wiederhergestellt und gestaltet (Bild 1c). Die barrierefreie Kommunikation zwischen Gestaltern dieser neuen Habitate für aquatische Lebewesen bedarf der Erklärung fachlicher Begriffe und dem Verständnisphysikalischer Prozesse des Sedimenttransports, der Morphodynamik und der Fließgewässermorphologie.
Terminologisch zu unterscheiden ist unter anderem zwischen der Fließgewässermorphologie, die die Formen von Fließgewässern beschreibt, und der Morphodynamik, die die zeitabhängigen Veränderungen der Formen von Fließgewässersystemen und die zugrundeliegenden Prozesse ausdrückt. In diesem Artikel wird der Fokus speziell auf die Morphodynamik und dem angestrebten Ziel ihrer Wiederherstellung in naturnahen Fließgewässern gelegt. Dazu ist es jedoch essenziell, die Zusammenhänge zur Fließgewässermorphologie und der Hydraulik bei jeglichen Aufwertungsmaßnahmen zu berücksichtigen. Die Hydraulik eines Fließgewässers beschreibt die Bewegung des Wassers und der dabei wirkenden Kräfte und steht in direkter Wechselwirkung mit den morphodynamischen Änderungen der Gewässersohle.



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft - Heft 02-03 (März 2022)
Seiten: 8
Preis: € 10,90
Autor: Stefan Haun
Dr. sc. Sebastian Schwindt
Prof. Dr.-Ing. Silke Wieprecht
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.