Klimaschutz und ein effizienter Umgang mit Ressourcen sind wesentliche Basis eines nachhaltigen Wirtschaftens. Die stoffliche und energetische Verwertung von biogenen Abfällen und Reststoffen kann dabei eine wesentliche Rolle spielen. Hierzu existiert inzwischen eine Vielzahl an thermochemischen, chemischen, physikalischen und biologischen Verfahren für unterschiedlichste Einsatzstoffe und Produkte
Seit etwa 15 Jahren stehen in diesem Zusammenhang auch Biokohlen und ihre Anwendungen wieder im Fokus. Technologien zu deren Herstellung sind schon sehr lange bekannt, dies belegen z. B. vor 38.000 Jahren entstandene Höhlenmalereien mit Holzkohle als Farbpigment oder bis zu 8.000 Jahre alte Terra Preta Böden mit Kohleanteilen anthropogenen Ursprungs am Amazonas. Für die Eisenproduktion wurde bereits vor 3.000 Jahren Holzkohle eingesetzt, der Köhler war bis zur industriellen Revolution ein gängiger Beruf. Aber erst mit der neuzeitlichen Untersuchung der Terra Preta Böden oder der Wiederentdeckung des von Bergius vor 100 Jahren untersuchten Verfahrens der hydrothermalen Carbonisierung rückte die Herstellung und Nutzung von Biokohlen verstärkt ins Blickfeld der Wissenschaft, wie die Zahl der seit etwa 2008 sprunghaft anwachsenden Veröffentlichungen zeigt (Quicker et al., 2017). Man verspricht sich vielfältige Vorteile wie eine langfristige Kohlenstofffixierung, Ertragssteigerungen bei Anwendung in der Landwirtschaft, die Möglichkeit der Behandlung von Rest- und Abfallstoffen, wie Klärschlamm und Gärresten, die Aufkonzentrierung von Nährstoffen oder den Ersatz fossiler Kohlen in stofflichen und energetischen Anwendungen. Inwieweit diese Vorteile tatsächlich zum Tragen kommen, hängt allerdings wesentlich von den Einsatzstoffen, den Umwandlungsverfahren, der Nutzung und/oder Behandlung von Nebenprodukten, den Nutzungsvarianten der Kohlen sowie weiteren Rahmenbedingungen ab. Zu letzteren zählen beispielsweise die Bereitstellung der Prozessenergien, die Nutzung von überschüssiger Abwärme, die aktuelle Bodenstruktur und Nährstoffversorgung bei agrartechnischen Anwendungen sowie die rechtliche Situation.
| Copyright: | © Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH |
| Quelle: | Biomasse-Forum 2019 (November 2019) |
| Seiten: | 14 |
| Preis: | € 7,00 |
| Autor: | Prof. Dr.-Ing. Achim Loewen |
| Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Europäische Rechtsvorgaben und Auswirkungen auf die Bioabfallwirtschaft in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Bioabfälle machen 34 % der Siedlungsabfälle aus und bilden damit die größte Abfallfraktion im Siedlungsabfall in der EU. Rund 40 Millionen Tonnen Bioabfälle werden jährlich in der EU getrennt gesammelt und in ca. 4.500 Kompostierungs- und Vergärungsanlagen behandelt.
Vom Gärrest zum hochwertigen Gärprodukt - eine Einführung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Auch mittel- bis langfristig steht zu erwarten, dass die Kaskade aus anaerober und aerober Behandlung Standard für die Biogutbehandlung sein wird.
Die Mischung macht‘s - Der Gärrestmischer in der Praxis
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Zur Nachbehandlung von Gärrest aus Bio- und Restabfall entwickelte Eggersmann den Gärrestmischer, der aus Gärresten und Zuschlagstoffen homogene, gut belüftbare Mischungen erzeugt. Damit wird den besonderen Anforderungen der Gärreste mit hohem Wassergehalt begegnet und eine effiziente Kompostierung ermöglicht.