Gekoppelte experimentelle und numerische Analyse von Staumauern mittels 3-dimensionaler Mehrphasen- und Mehrfeldmodelle

Der Artikel diskutiert Möglichkeiten, mittels gekoppelter Modellierung und Monitoring das physikalische Verhalten von Staumauern umfassender zu analysieren. Das in einem früheren Stadium erstellte und kalibrierte Modell wird mit den Belastungen des realen Bauwerks in einem späteren und längeren Zeitraum gerechnet und kann daher als digitaler Zwilling erachtet werden. Dieser kann genutzt werden, um im Falle von zu großer Diskrepanz zwischen Modell- und Strukturantwort Hinweise auf strukturelle Änderungen zu liefern.

1 Einleitung
Viele Staumauern wurden am Anfang des zwanzigsten Jahrhunderts gebaut. Nach mehr als hundert Jahren des Betriebs haben sich möglicherweise die strukturellen Eigenschaften der Bauwerke verändert. Gründe können chemische Effekte, Rissbildung oder innere Erosion sein. Generell ist davon auszu gehen, dass sich die Materialeigenschaften der Staumauern zumindest lokal verändert haben. Diese Änderungen können auf das physikalische Verhalten der Bauwerke Einfluss haben, was sich z. B. in einer erhöhten Durchsickerung oder einer stärkeren Deformation in Folge von mechanischen oder thermischen Lasten äußert. Für den sicheren Betrieb von Stauanlagen ist eine Überprüfung des physikalischen Verhaltens der Staumauern in definierten Zeitabständen durchzuführen (Monitoring). Dies geschieht in der Regel durch das Aufzeichnen von physikalischen Größen mit geeigneter Sensorik und deren manueller Prüfung bezüglich unerwarteter Strukturantworten. Insbesondere wird das Verhalten mit Messungen aus vorherigen Zeiträumen verglichen, ohne unbedingt sämtliche physikalischen Interaktionen und geänderte Randbedingungen in Betracht zu ziehen. Dieses klassische Vorgehen wird in diesem Beitrag um eine Kopplung mit einer numerischen Analyse der Staumauer er weitert. Dazu wird die Geometrie der Staumauer der Fürwiggetalsperre in ein 3­dimensionales Finite­Elemente­Modell überführt (Bild 1). Der getätigten Analyse liegen zweiphasige thermo­hydro­mechanische Beziehungen zu Grunde, die es erlauben, sämtliche physikalischen Effekte und deren Interaktionen möglichst präzise zu erfassen [1]-[5]. Das Modell wird über die gemessenen äußeren Bedingungen, wie Stauhöhe und jahreszeitlich variierende Temperaturen, gesteuert (Bild 2).



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft - Heft 04 - 2019 (Mai 2019)
Seiten: 4
Preis: € 10,90
Autor: Prof. Dr.-Ing. Volker Bettzieche
Dr. rer. nat. Tom Lahmer
Dr.-Ing. Long Nguyen-Tuan
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Hygienisierung und Trocknung von Gärresten - Erfahrungen mit dem Herhof-Belüftungssystem
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Die Herstellung von Qualitätskomposten aus Bioabfallgärresten stellt herkömmliche Kompostierungssysteme vor große Herausforderungen. Je nach Vergärungssystem müssen Hygienisierungsnachweise nach Bioabfallverordnung oder deutliche Veränderungen im Trockensubstanzgehalt zusätzlich zum organischen Abbau erzielt und nachgewiesen werden. Erfahrungen im Bereich Bioabfallkompostierung oder biologischer Trocknung von Restabfall fließen in die Umsetzung der Gärrestbehandlungssysteme mit ein. Anhand der kombinierten Vergärungs- und Kompostierungsanlagen in Cröbern und Bernburg werden die Ergebnisse und die Grenzen des Herhof-Belüftungssystems speziell im Hinblick auf Hygienisierung nach Bioabfallverordnung und Trocknung für die Kompostaufbereitung dargestellt.

Der Weg vom Gärrest zum Qualitätskompost - Erfahrungen in umgesetzten Anlagen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Die Erzeugung eines hochwertigen Qualitätskomposts ist vielfach ein Schlüssel zum wirtschaftlichen Erfolg einer Bioabfallbehandlungsanlage. Da jedoch die meisten Bioabfälle bei der Anlieferung in einer Behandlungsanlage immer noch einen sehr hohen Fremdstoff- und Verunreinigungsanteil aufweisen, ist neben einer effizienten biologischen Behandlung - in einer Kaskadennutzung bei hohem Biogasertrag und guter Aerobisierung und Nachrotte der Gärreste - die Abscheidung der Störstoffe in einer Kompostfeinaufbereitung der Schlüssel zu einem vermarktbaren Qualitätskompost.

TGV - Thöni Gärrestverwertung: Kompostierungstechnologie zur Behandlung von Gärresten
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Die TGV - Thöni Gärrestverwertung behandelt Gärreste aus Vergärungsanlagen und verarbeitet sie zu hochwertigem Kompost. Das System schließt die Lücke zwischen anaerober Vor- und aerober Nachbehandlung. Durch eine eigene Technologie werden Schnittstellen reduziert und Planung sowie Ausführung aus einer Hand ermöglicht.