Der Artikel diskutiert Möglichkeiten, mittels gekoppelter Modellierung und Monitoring das physikalische Verhalten von Staumauern umfassender zu analysieren. Das in einem früheren Stadium erstellte und kalibrierte Modell wird mit den Belastungen des realen Bauwerks in einem späteren und längeren Zeitraum gerechnet und kann daher als digitaler Zwilling erachtet werden. Dieser kann genutzt werden, um im Falle von zu großer Diskrepanz zwischen Modell- und Strukturantwort Hinweise auf strukturelle Änderungen zu liefern.
1 Einleitung
Viele Staumauern wurden am Anfang des zwanzigsten Jahrhunderts gebaut. Nach mehr als hundert Jahren des Betriebs haben sich möglicherweise die strukturellen Eigenschaften der Bauwerke verändert. Gründe können chemische Effekte, Rissbildung oder innere Erosion sein. Generell ist davon auszu gehen, dass sich die Materialeigenschaften der Staumauern zumindest lokal verändert haben. Diese Änderungen können auf das physikalische Verhalten der Bauwerke Einfluss haben, was sich z. B. in einer erhöhten Durchsickerung oder einer stärkeren Deformation in Folge von mechanischen oder thermischen Lasten äußert. Für den sicheren Betrieb von Stauanlagen ist eine Überprüfung des physikalischen Verhaltens der Staumauern in definierten Zeitabständen durchzuführen (Monitoring). Dies geschieht in der Regel durch das Aufzeichnen von physikalischen Größen mit geeigneter Sensorik und deren manueller Prüfung bezüglich unerwarteter Strukturantworten. Insbesondere wird das Verhalten mit Messungen aus vorherigen Zeiträumen verglichen, ohne unbedingt sämtliche physikalischen Interaktionen und geänderte Randbedingungen in Betracht zu ziehen. Dieses klassische Vorgehen wird in diesem Beitrag um eine Kopplung mit einer numerischen Analyse der Staumauer er weitert. Dazu wird die Geometrie der Staumauer der Fürwiggetalsperre in ein 3dimensionales FiniteElementeModell überführt (Bild 1). Der getätigten Analyse liegen zweiphasige thermohydromechanische Beziehungen zu Grunde, die es erlauben, sämtliche physikalischen Effekte und deren Interaktionen möglichst präzise zu erfassen [1]-[5]. Das Modell wird über die gemessenen äußeren Bedingungen, wie Stauhöhe und jahreszeitlich variierende Temperaturen, gesteuert (Bild 2).
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasserwirtschaft - Heft 04 - 2019 (Mai 2019) |
Seiten: | 4 |
Preis: | € 10,90 |
Autor: | Prof. Dr.-Ing. Volker Bettzieche Dr. rer. nat. Tom Lahmer Dr.-Ing. Long Nguyen-Tuan |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
carboliq® - Direktverölung gemischter Kunststoffabfälle
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2025)
Die Forderung nach Klimaneutralität dominiert die globale Diskussion über die Zukunft der Industriegesellschaft. Damit einher geht auch die Frage, wie der
Umgang mit Kunststoffen in Zukunft erfolgen wird.
Nutzungskonflikt zwischen Carbon-Capture-Anlagen und Fernwärme?
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2025)
Die EEW Energy from Waste GmbH (EEW) hat sich das Ziel gesetzt, bis 2045 klimaneutral zu werden. Mit 17 Standorten verfügt EEW über eine Verbrennungskapazität von ca. 5 Millionen Tonnen Abfall pro Jahr.
Abfall- und Kreislaufwirtschaft in Deutschland im internationalen Vergleich - Spitzenplatz oder nur noch Mittelmaß?
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2025)
Neben der Umstellung der künftigen Energieversorgung auf ein zu 100 % erneuerbares Energiesystem ist die Abfall- und Kreislaufwirtschaft die zweite zentrale Säule im Rahmen der globalen Transformation in eine klimaneutrale Wirtschaft und Gesellschaft.