Für hydrologische und wasserwirtschaftliche Fragestellungen wird eine Vielzahl von Modellen mit unterschiedlichsten Konzeptionen und Prozessabbildungen eingesetzt. Vorgestellt werden die Ergebnisse einer Online-Umfrage zur Modellklassifizierung und Charakterisierung der Modellstärken und -schwächen.
Hydrologische Modelle unterscheiden sich in einer Vielzahl von Eigenschaften hinsichtlich Konzeption, Anwendungsbereich, räumlicher und zeitlicher Auflösung, ihrer Rechenzeit sowie im Detailierungsgrad der Abbildung der verschiedenen hydrologischen Prozesse [2]. Die Wahl eines geeigneten Modells kann je nach Zielsetzung variieren. Daraus ergeben sich unterschiedliche Anforderungen an den Detaillierungsgrad und die physikalisch basierte Darstellung der hydrologischen Prozesse, da diese je nach Anwendung und Einzugsgebiet eine unterschiedlich große Bedeutung haben können [17]. Die Auswahl eines Modells erfolgt nach Clark et al. [7] unter Berücksichtigung von (mindestens) vier Aspekten: Exaktheit (in der Prozessabbildung), Komplexität (Detaillierungsgrad in der Prozessabbildung), Durchführbarkeit (z.B. durch Rechenbedarf) und Datenverfügbarkeit. Darüber hinaus kann noch die Erfahrung des Modellentwicklers eine wichtige Rolle spielen. Eine vereinfachte Prozessabbildung führt dazu, dass der Prozess weniger realitätsnah in Raum und/oder Zeit abgebildet wird [6, 17]. Andererseits ermöglicht dies unter anderem eine Reduktion der Rechenzeit und des Aufwands bei der Datenbereitstellung. Reicht eine solche Prozessabbildung nicht mehr aus, um Detailliertheit und Variabilität eines hydrologischen Prozesses abzubilden, kann diese in eine stärker physikalisch basierte Repräsentation überführt werden (z.B. Energiebilanzansatz statt Tag-Grad-Verfahren für die Berechnung der Schneeschmelze). Für die Berechnung einzelner hydrologischer Prozesse sind in der Regel eine Vielzahl an alter nativen Konzeptionen verfügbar [7], zum Beispiel verschiedene Gleichungen zur Berechnung der Verdunstung (z. B. Hargreaves, Priestley-Taylor, Penman-Monteith).
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasser und Abfall 05 - 2019 (Mai 2019) |
Seiten: | 10 |
Preis: | € 10,90 |
Autor: | Prof. Dr. Helge Bormann Dr. Björn Guse M. Sc. Tobias Pilz Dr. Michael Stoelzle |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.