Exposed Geomembrane System at Großer Mühldorfer See Dam

Großer Mühldorfer See, a gravity dam owned by Verbund Hydro Power GmbH, will be part of Reisseck II pumped storage plant. The dam, 46.50 m high, has upstream prefabricated concrete slabs sealed with bituminous material and Kemperol strips requiring repeated repairs. A geomembrane system was installed to water tighten the dam and avoid maintenance. Among the challenges, the remote site location, the conditions of the facing and of the plinth, and the difficult climate. The article describes how design addressed such challenges and how installation was carried out to meet the objectives and deadlines.

Großer Mühldorfer See dam is a concrete gravity dam completed in 1957 and owned by Verbund Hydro Power GmbH. At present, the dam is the annual storage reservoir for the Reisseck hydropower plant. In the future, the reservoir formed by the dam will serve as upper basin for the pumped storage power plant Reisseck II, currently under completion. With Reisseck II, Verbund is expanding and modernising its existing Maltatal valley and Reisseck power plants, which have existed for 40 to 60 years, thus creating one of the most productive power plant groups in Europe. Pumped storage plants like Reisseck II are the ecologically and economically most sensible way to balance out the heavily fluctuating electricity production from wind and solar energy, making renewable energy as optimally useful as possible. Within the Reisseck II plant, Großer Mühldorfer See basin will be used as a weekly or daily reservoir, with water level fluctuations that could reach 30.0 m in just one day.

Großer Mühldorfer See dam is located in the municipality of Kolbnitz, in Carinthia (Austria), at an altitude of approximately 2 300 m a.s.l. The dam is 46.50 m high and 433 m long, with a net crest width of 2.25 m, an upstream inclination of 1:0.02 and a downstream inclination of 1:0.66. The body of the dam includes an overflow spillway and a bottom outlet at the heel. The dam has an intermediate and a bottom inspection gallery.



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft 06/2016 (Juni 2016)
Seiten: 4
Preis: € 10,90
Autor: Dr. Eng. Gabriella Vaschetti
Dr. Eng. Alberto Scuero
Heinz Brunold
Dr. Roman Kohler
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau der Wasserstoffinfrastruktur in Deutschland

Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens - ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.

Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit