Die Schluchseewerk AG mit Sitz in Laufenburg, Baden-Württemberg, plant den Bau des Pumpspeicherwerks Atdorf im Südschwarzwald. Das Projekt befindet sich aktuell im Genehmigungsverfahren. Das Projekt zählt zu den größten Bauvorhaben seiner Art in Mitteleuropa und wird ein wesentlicher Baustein der Energiewende sein. Während des Planungsprozesses wurde auf eine größtmögliche Transparenz des Verfahrens durch vielfältige Beteiligung von Öffentlichkeit und Behörden Wert gelegt. Die Dimensionierung der Sperren und Dämme für ein sicheres Verhalten bei extremen und seltenen Erdbebeneinwirkungen bildete einen Schwerpunkt der Planung.
Wichtigste Bestandteile des Pumpspeicherwerks (PSW) Atdorf sind der Bau des Oberbeckens (Hornbergbecken II), der Bau des Unterbeckens (Haselbecken) sowie der Bau der Untertagebauwerke mit der Errichtung des eigentlichen Kraftwerks in zwei Kavernen und der Triebwasserwege. Der südliche Schwarzwald ist topographisch und geologisch gesehen ein ideales Gebiet zur Umsetzung von PSW. Insbesondere beim Standort des geplanten PSW Atdorf kann das Speicherpotenzial aufgrund der günstigen Gegebenheiten baulich effizient und wirtschaftlich genutzt werden. Das PSW Atdorf ist auf eine installierte Leistung von 1400 MW im Turbinen-und Pumpbetrieb ausgelegt. Das Energiespeichervermögen (Arbeitsvermögen) beträgt rund 13,1 GWh/a. Das geplante Oberbecken (Hornbergbecken II) befindet sich auf einer Bergkuppe östlich von Atdorf und südöstlich des bestehenden Oberbeckens des KW Wehr. Das Becken wird durch einen Ringdamm mit einer Kronenlänge von rund 2 560 m begrenzt. Es wird innerhalb des vorhandenen Waldes gebaut und bestmöglich in das Landschaftsbild eingepasst. Das Becken hat bei einer maximalen Länge von rund 1 400 m und einer maximalen Breite von rund 685 m einen Nutzinhalt von 9 Mio. m³. Als Standort des Unterbeckens (Haselbecken) ist das Haselbachtal, ein kleines Seitental des Rhein-und Wehratales, nordwestlich von Bad Säckingen vorgesehen. Das Becken wird im Westen durch eine 115 m hohe Gewichtsstaumauer aus Walzbeton (Hauptsperre) abgeschlossen. Der Abschlussdamm I, ein Schüttdamm mit Erdkerndichtung, begrenzt einen Bergsattel nach Süden. Der Abschlussdamm II, ein Damm mit Oberflächenabdichtung in Verbindung mit einer in den Fels einbindenden Dichtwand, grenzt das Tal nach Osten hin ab. Das Haselbecken hat entlang des Haupttals eine größte Erstreckung von rund 1,3 km. Das Nutzvolumen ist wie beim Oberbecken 9 Mio. m³. Zwischen dem Oberbecken und dem Unterbecken ergibt sich eine Fallhöhe von rund 600 m. Die Maschinenkaverne ist senkrecht unterhalb des Oberbeckens geplant.
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasserwirtschaft 06/2016 (Juni 2016) |
Seiten: | 4 |
Preis: | € 10,90 |
Autor: | Ulrich Gommel Dipl. Ing. Reinhard Fritzer Frank Remmert Marco Conrad Dipl.-Ing. Gundo Klebsattel |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.