Die Bestimmung des Breschenabflusses ist ein maßgebender Bestandteil der Gefahrenbeurteilung von Stauanlagen. Für die Berechnung gibt es verschiedene Ansätze, welche sich im Detaillierungsgrad und der Berechnungseffizienz unterscheiden. In diesem Beitrag wird ein Verfahren vorgestellt, um den Breschenabfluss bei homogenen Schüttdämmen physikalisch basiert abzuschätzen. Dabei wird ein progressiver Versagensvorgang berücksichtigt. Anhand der Ergebnisse wird die Sensitivität der verschiedenen Einflussgrößen aufgezeigt.
Die Gefahrenbeurteilung von Stauanlagen ist eine wichtige Aufgabe im Risikomanagement. Im Falle des Versagens eines Absperrbauwerks und einer daraus resultierenden Flutwelle können Menschen und Infrastruktur zu Schaden kommen. Die Gefahrenbeurteilung wird üblicherweise in drei Schritte eingeteilt:
i) Bestimmung der Abflussganglinie,
ii) Berechnung der Flutwellenausbreitung
und iii) Beurteilung der Gefährdung von Mensch und Infrastruktur.
Der vorliegende Beitrag befasst sich ausschließlich mit dem ersten Schritt der Gefahrenbeurteilung und stellt eine neue Vorgehensweise für die Bestimmung des Abflusses bei einem progressiven Bruch kleiner, homogener Schüttdämme vor. Diese kommen beispielsweise an Hochwasserrückhaltebecken und kleinen Stauanlagen, aber auch als Längsdämme an Flüssen in Form von Stauhaltungs- und Hochwasserschutzdämmen vor. Zur Berechnung des Abflusses gibt es verschiedene Ansätze, die sich vor allem hinsichtlich Detaillierungsgrad und Anwendung unterscheiden. Darunter sind die empirischen sowie analytischen Ansätze die einfachsten Modelle und liefern als Resultat den maximalen Breschenabfluss. Eine Steigerung stellen Parametermodelle dar, welche auf vereinfachenden Annahmen des physikalischen Vorgangs basieren und den zeitlichen Verlauf des Bruchprozesses nachbilden können. Die differenziertesten und aufwendigsten Ansätze sind numerische Modelle, welche sowohl die Strömung als auch den Erosionsprozess dynamisch und mit mehreren Freiheitsgraden (ein- bis dreidimensional) abbilden können. Der mit dem Dammbruchmodell ermittelte Breschenabfluss kann im zweiten Schritt als zentrale Eingangsgröße für die Abschätzung der Flutwellenausbreitung verwendet werden.
Copyright: | © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH |
Quelle: | Wasserwirtschaft 06/2016 (Juni 2016) |
Seiten: | 4 |
Preis: | € 10,90 |
Autor: | Dr. David F. Vetsch Prof. Dr. Robert Boes |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.
Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.
In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.