Seit ihrer Markteinführung in den späten 1980er Jahren haben gesinterte NdFeB-Magnete eine weite Verbreitung in verschiedenen Anwendungen wie Festplatten, Lautsprechern, getriebelosen Windturbinen und Synchronmotoren gefunden, die aufgrund ihrer hohen Leistungsdichte für Hybrid- und Elektrofahrzeuge favorisiert werden. Ungeachtet ihrer über zwanzigjährigen Verwendung werden aber erst seit kurzem ernsthafte Anstrengungen unternommen, industriell umsetzbare Recyclingverfahren für NdFeB-Magnete zu entwickeln, hauptsächlich motiviert durch die Auswirkungen Chinas dominierender Rolle auf dem Markt für Seltene Erden.
Eine dieser Anstrengungen ist das vom Bundesministerium für Bildung und Forschung geförderte Verbundforschungsprojekt Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben - MORE (Motor Recycling). In diesem Projekt arbeiten die Siemens AG, die Daimler AG, die Umicore AG & Co. KG, die Vacuumschmelze GmbH & Co. KG, das Öko-Institut e.V., das Fraunhofer Institut für System- und Innovationsforschung, der Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik der Friedrich-Alexander Universität Erlangen-Nürnberg sowie der Lehrstuhl für Rohstoffaufbereitung und Recycling der Technischen Universität Clausthal zusammen mit dem Ziel, industriell umsetzbare Recyclinglösungen für permanentmagnetbasierte Elektromotoren aus Hybrid- und Elektrofahrzeugen zu entwickeln. Um dieses Ziel zu erreichen, werden im Projekt verschiedene Wege untersucht:
Desweiteren werden im Projekt Konzepte für recyclinggerechte Motorendesigns sowie automatisierte Demontagetechnologien entwickelt. Begleitet wird die Verfahrensentwicklung durch Ökoeffizienzanalysen sowie eine Untersuchung von Angebot und Nachfrage, Stoffströmen und derzeitigem Recycling der Seltenerdmetalle Praseodym (Pr), Neodym (Nd), Terbium (Tb) und Dysprosium (Dy), die in NdFeB-Magneten eingesetzt werden. Der Beitrag des Lehrstuhls für Rohstoffaufbereitung und Recycling der Technischen Universität Clausthal zum Projekt besteht in der Entwicklung von Rückgewinnungsverfahren für Seltene Erden und weitere Wertmetalle aus demontierten Magneten bzw. Magnetschrottfraktionen mechanischer Aufbereitungsprozesse sowie Schlacken pyrometallurgischer Recyclingansätze. Im Rahmen dieser Veröffentlichung werden zwei entwickelte hydrometallurgische Verfahrensansätze zum rohstofflichen Recycling von demontierten NdFeB-Magneten sowie ihr Entwicklungsstand vorgestellt.
| Copyright: | © Thomé-Kozmiensky Verlag GmbH |
| Quelle: | Recycling und Rohstoffe 7 (2014) (Juni 2014) |
| Seiten: | 13 |
| Preis: | € 0,00 |
| Autor: | Prof. Dr.-Ing. Tobias Elwert Prof. Dr. Daniel Goldmann |
| Artikel nach Login kostenfrei anzeigen | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.
Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.
In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.