Thermodynamische Herausforderung bei Recycling von Nebenmetallen

Unsere Gesellschaft ist zunehmend von Metallen und Mineralien abhängig, die nur in sehr geringen Konzentrationen in der Erdkruste vorkommen. Relevante Zukunftstechnologien aus unterschiedlichen Lebensbereichen wie Energieversorgung, Mobilität, Kommunikation und Unterhaltung sind auf eine gesicherte Versorgung mit Metallen wie Germanium, Tantal, Indium angewiesen. Das Angebot dieser Stoffe ist von unterschiedlichen Faktoren abhängig.

Neben Länder- und Konzernkonzentrationen fallen diese Elemente häufig nur als Koppelprodukte anderer Elemente an. Die Gewinnung ist nicht selten mit erheblichen Umweltbelastungen verbunden. Die unzureichende Erfassung, hohe Dissipation und fehlende Recyclingtechnologien sind einige Gründe dafür, dass diese Elemente und Verbindungen bisher nur ansatzweise in den Kreislauf zurückgeführt werden. Verschiedene Studien nennen zudem Recyclingrestriktionen als einen wesentlichen Indikator für die Einstufung von Metallen als kritische Metalle. Für Deutschland, als rohstoffarmer High-Tech Standort, besteht die zwingende Notwendigkeit, intelligente Lösungsansätze zu entwickeln, um die Versorgung mit diesen Ressourcen sicherzustellen und die Abhängigkeit von Importen zu verringern. Elektro- und Elektronikaltgeräte (EAG) sind in diesem Zusammenhang als wichtige Quelle anzusehen.

Die Quantifizierung von Potenzialen und Lokalisierung von Verlusten ist ein wichtiger Schritt, um die heute noch geringen Recyclingquoten von Nebenmetallen zu erhöhen. Um eine künftig nachhaltige Recyclinginfrastruktur für diese Elemente aufzubauen, ist es jedoch aus ökonomischen und energetischen Gründen notwendig zu differenzieren, in welchem Verbund bzw. Legierung und in welchen Konzentrationen sie vorkommen.

Dieser Beitrag soll anhand von zwei exemplarischen Beispielen (Seltenerdmetalle aus Festplatten und Indium aus LCD-Panels) zeigen, wo neue Recyclingverfahren ansetzen müssen, welche thermodynamischen Grenzen des Recycling es gibt und weshalb nur ein konsequentes recycling-orientiertes Produktdesign langfristig maximierte Kreislaufführung sichern kann.



Copyright: © Thomé-Kozmiensky Verlag GmbH
Quelle: Recycling und Rohstoffe 5 (2012) (Juni 2012)
Seiten: 15
Preis: € 0,00
Autor: Prof. Dr.-Ing. Vera Susanne Rotter
Prof. Dr.-Ing. Sabine Flamme
Dipl.-Ing. Maximilian Ueberschaar
Dipl.-Ing. Ramona Götze
 
 Artikel nach Login kostenfrei anzeigen
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Europäische Rechtsvorgaben und Auswirkungen auf die Bioabfallwirtschaft in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Bioabfälle machen 34 % der Siedlungsabfälle aus und bilden damit die größte Abfallfraktion im Siedlungsabfall in der EU. Rund 40 Millionen Tonnen Bioabfälle werden jährlich in der EU getrennt gesammelt und in ca. 4.500 Kompostierungs- und Vergärungsanlagen behandelt.

Vom Gärrest zum hochwertigen Gärprodukt - eine Einführung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Auch mittel- bis langfristig steht zu erwarten, dass die Kaskade aus anaerober und aerober Behandlung Standard für die Biogutbehandlung sein wird.

Die Mischung macht‘s - Der Gärrestmischer in der Praxis
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Zur Nachbehandlung von Gärrest aus Bio- und Restabfall entwickelte Eggersmann den Gärrestmischer, der aus Gärresten und Zuschlagstoffen homogene, gut belüftbare Mischungen erzeugt. Damit wird den besonderen Anforderungen der Gärreste mit hohem Wassergehalt begegnet und eine effiziente Kompostierung ermöglicht.