Due to the demographic change in Europe the amount of incontinence waste is expected to increase drastically. In Germany, the incontinence waste stream is currently estimated as 200,000 metric tonnes per year. The 'INKOCYCLEâ€-Project focuses on a combination of energy and material recovery from adult incontinence waste. Energy recovery is pursued by anaerobic digestion of the biodegradable fraction of the diapers whereas material recovery options are targeted for the digestion residue. The anaerobic digestion of the biodegradable organic fractions results in 663 L biogas per kg organic dry residue, with an average composition of 56 % CH4 and 44 % CO2. Based on the original waste the gas yield is 155 L biogas per kg of used diapers. The digestion residue mostly consists of the non-biodegradable plastic components, adhering biomass and the superabsorbent polymer. The calorific value of the ‘plastics fraction’ (dry residue 42 %) is about 12 MJ per kg of washed digestion residue.
Due to the demographic change in Europe the amount of incontinence waste (used adult diapers) is expected to increase drastically. In Germany, the incontinence waste stream is currently estimated as 200,000 metric tonnes per year (MEYER, 2014). This corresponds to a share of 1.4 % by weight of annual residual waste in Germany (Destatis, 2014). About 60 to 80 % of the residual waste of German Aged Care Facilities (ACFs) consists of used incontinence products (BECHER, 2009). Cost pressure in the health care sector demands for economically and ecologically sound management Systems for this waste stream. Since the organic carbon content of incontinence waste are above the waste acceptance criteria for landfilling the only secured way of disposal is incineration. The Research project 'INKOCYCLE†(project number: 03FH006PX2, funded by the Federal Ministry of education and research) aims at the development of a cost effective and ecologically sound alternative to the conventional disposal as well as the elaboration of an overall concept for the treatment of incontinence waste, incorporating waste logistics. Energy recovery is pursued by anaerobic digestion of the biodegradable fraction of Thein continence waste coupled with the use of the dried fermentation residue as refuse derived fuel (RDF).
Copyright: | © Wasteconsult International |
Quelle: | Waste-to-Resources 2015 (Mai 2015) |
Seiten: | 11 |
Preis: | € 0,00 |
Autor: | Dipl.-Ing. (FH) Johanna Heynemann Dipl.-Ing. Steffen Herbert Dipl.-Ing. Thomas Luthardt-Behle Prof. Dr. Harald Weigand Prof. Dr. Ulf Theilen |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Rechtliche und praktische Unsicherheiten bei der Durchführung des europäischen Klimaanpassungsrechts durch das Bundes- Klimaanpassungsgesetz (KAnG)
© Lexxion Verlagsgesellschaft mbH (6/2025)
In the context of the European Climate Law (EU) 2021/1119), the Governance Regulation (EU) 2018/1999 and the Nature Restoration Regulation (EU) 2024/1991, the KAnG came into force on July 1, 2024.
Transformatives Klimarecht: Raum, Zeit, Gesellschaft
© Lexxion Verlagsgesellschaft mbH (6/2025)
This article contends that climate law should be conceived as inherently transformative in a double sense. The law not only guides the necessary transformation of economy and society, but is itself undergoing transformation.
Maßnahmen zur Klimaanpassung sächsischer Talsperren
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (5/2025)
Die Landestalsperrenverwaltung des Freistaates Sachsen (LTV) betreibt aktuell insgesamt 87 Stauanlagen, darunter 25 Trinkwassertalsperren. Der Stauanlagenbestand ist historisch gewachsen und wurde für unterschiedliche Zwecke errichtet.