The use of landfills for the disposal of municipal solid waste (MSW) has many technical and regulatory limits. An interesting solution is to recover the bales that have been previously stored in a landfill. After specific mechanical biological treatments (MBT), the contents of the bales can be used to produce a solid recovered fuel (SRF) that can be used for energy purposes. The possibility of producing SRF fuels from a landfill in northern Italy has been studied and is presented in this paper. The MSW extracted from the landfill, the bio-dried material produced by the waste hypothetically treated in a plant for bio-drying, and the SRF obtained after the extraction of inert materials, metals and glass from the bio-dried material have been characterized. Assessed the waste nature, the potential environmental impact of dioxin release from a possible landfill fire has been analysed, applying the Austal2000 model system.
The European Union (EU) legislation puts landfills in the last place in the waste Management hierarchy and in the first places material and energy recovery together with a highly efficient decrease in the landfill of biodegradable materials. In recent years the focus on landfill reclamation has increased, also referred to as landfill mining. Landfill mining (LFM) involves the excavation, transfer, and processing of buried material taken from an active or closed (generally unlined) landfill (Hogland et al., 2004). After waste excavation, the conditioning treatment can take place either directly on the landfill or in a mechanical biological treatment (MBT) plant.'Bio-drying†is an MBT approach that exploits the biological reactivity of the waste in order to produce a material with an improved lower heating value (LHV) thanks to the moisture reduction. Either with or without some post-treatment, this material can be considered as a solid recovered fuel (SRF), which can be used for energy production in industrial plants . The SRF definition was introduced in Italy by the Italian Decree 205/2010. Its classification system for SRFs in based on limit values for three important fuel properties: LHV, chlorine and mercury. With the Ministerial Decree no. 22/2013 only some SRF typescan achieve ‘End of Waste’ status and that also under specific conditions. This new SRF in Italy was named 'combustible SRFâ€.
Copyright: | © Wasteconsult International |
Quelle: | Waste-to-Resources 2015 (Mai 2015) |
Seiten: | 12 |
Preis: | € 0,00 |
Autor: | Dr.-Ing. Dipl. Elena Cristina Rada Dr.-Ing. Dipl. Marco Ragazzi Prof. Dr.-Ing. Vincenzo Torretta Ing. Giorgia Passamani |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Fremdstoffgehalte in den Sieblinien von Biogut nach Voraufbereitung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2024)
Fremd- und Kunststoffeinträge im getrennt erfassten Biogut rücken zunehmend in den Fokus des Gesetzgebers. Mit der Novellierung der BioAbfV treten zum 01.05.2025 erstmals Grenzwerte in Kraft, die sich auf das frische Biogut vor der biologischen Behandlung beziehen.
Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau
der Wasserstoffinfrastruktur in Deutschland
Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens
- ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.