Infolge des demografischen Wandels in Europa wird das Aufkommen an Inkontinenzabfällen deutlich zunehmen. Deutschlandweit handelt es sich derzeit um eine geschätzte jährliche Menge von 200.000 Tonnen Inkontinenzabfall. Das Projekt 'INKOCYCLE' konzentriert sich auf eine Kombination aus energetischer und stofflicher Verwertung des Inkontinenzabfalls. Die energetische Verwertung erfolgt mittels anaerober Fermentation der biologisch abbaubaren Bestandteile des Inkontinenzproduktes, während sich die stoffliche Verwertung auf den Gärrest bezieht. Der anaerobe Abbau der organischen Fraktionen bringt 663 Liter Biogas pro kg organischer Trockenmasse, mit einer durchschnittlichen Zusammensetzung von 56 % CH4 und 44 % CO2. Dies entspricht 155 L Biogas pro kg Originalsubstrat. Der Gärrest besteht hauptsächlich aus den nicht abbaubaren Kunststoffbestandteilen, anhaftender Biomasse und Superabsorber. Der Heizwert der 'Kunststofffraktion' beträgt ca. 12 MJ pro kg, bei einem Feuchtigkeitsgehalt von 42 %.
Infolge des demografischen Wandels in Europa wird das Aufkommen an Inkontinenzabfällen (gebrauchte Erwachsenenwindeln) deutlich zunehmen. Deutschlandweit handelt es sich derzeit um eine geschätzte jährliche Menge von 200.000 Tonnen Inkontinenzabfall (MEYER, 2014). Dies entspricht einem Anteil von ca. 1,4 % am gesamten in Deutschland anfallenden Restmüll (DESTATIS, 2014). Der Anteil an Inkontinenzabfall im Restmüll aufkommen von Pflegeeinrichtungen liegt bei ca. 60 bis 80 %, Tendenz steigend (BECHER, 2009). Die damit verbundenen hohen Kosten verlangen für diesen Abfallstrom ein wirtschaftliches und ökologisches Managementsystem. Aufgrund des Verbotes der Ablagerung organischer Abfallstoffe auf Deponien besteht derzeit die einzige gesicherte Entsorgungsmöglichkeit in der Verbrennung der gebrauchten Inkontinenzprodukte. Ziele des vom Bundesministerium für Bildung und Forschung finanzierten Forschungsvorhabens 'INKOCYCLE' (Förderkennzeichen:03FH006PX2) sind die Entwicklung einer kostengünstigen und ökologisch sinnvollen Alternative zum bestehenden Entsorgungsweg sowie die Entwicklung eines Gesamtkonzeptes zur Verwertung von Inkontinenzabfällen unter Einbeziehung eines Logistikkonzeptes. Die Verwertung erfolgt durch die anaerobe Umsetzung der biologisch abbaubaren Abfallkomponenten in Biogas kombiniert mit der Nutzung des getrockneten Gärrestes (primär Kunststoffe) als Ersatzbrennstoff.
| Copyright: | © Wasteconsult International |
| Quelle: | Waste-to-Resources 2015 (Mai 2015) |
| Seiten: | 13 |
| Preis: | € 0,00 |
| Autor: | Prof. Dr. Ulf Theilen Prof. Dr. Harald Weigand Dipl.-Ing. (FH) Johanna Heynemann Dipl.-Ing. Steffen Herbert Dipl.-Ing. Thomas Luthardt-Behle |
| Artikel nach Login kostenfrei anzeigen | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.
Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.
In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.