China comes first on the world list as to coal and nitrogen-fertilizer consumption, solid waste production and CO2 andCH4 emissions. At the same time, the country has to cope with one of the most rapid periods of urbanization in history.
China is currently making many efforts to reduce and even to cope with these problems in order to ensure its energy supply and a sustainable social, economic and environmental development. Anaerobic digestion technology could have a great impact on all the above-mentioned problems and contribute positively to the renewable energy sector. Anassessment of biomass resources was performed to evaluate the theoretical biogas potential from urban wastes(household waste, municipal sewage sludge) and agricultural wastes (crop residues, animal manure). This studycalculates only the biogas potential of feedstock, which is used in middle- and large- scale biogas plants. Landfillgas,decentralized wastewater treatment systems and small household digesters are not included. A theoretical current annual biogas potential of 290 billion m3 was estimated, which could account for 6.9% of the total energy demand. Furthermore, the annual potential could increase to 439.4 billion m3 by 2030 by including the feedstock energy cropsfrom marginal land. Biogas plants with an initial capacity potential of 71.4 GW could, therefore, be installed and couldcontribute more to the renewable energy targets as planned so far. Digestate, a by-product of the process, is asustainable green fertilizer. By treating the whole assessed feedstock, the digestate generated would replace nearly 30%of inorganic fertilizer and exceed China’s current demand for bio-fertilizer. By using the anaerobic digestion process asthe main treatment option for the selected feedstock, the current total reduction potential of CO2 equivalents is 4.75billion tons. By 2030, even 7 billion tons of CO2 equivalents could be saved. The current and future forecasts of thebiomass availability say that the resources are far from being fully exploited, but they also show that the policy targetsto develop sustainable biogas energy (6.6% by 2010 and 10% by 2020) could be easily reached and much more ambitious.
Copyright: | © European Compost Network ECN e.V. |
Quelle: | Orbit 2012 (Juni 2012) |
Seiten: | 12 |
Preis: | € 12,00 |
Autor: | M. Sc. Christian Brauner Prof. Dr. habil. Bernhard Raninger Prof. Dr. Renjie Dong Prof. Dr. Raffaella Villa |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau
der Wasserstoffinfrastruktur in Deutschland
Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens
- ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.
Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit