Composting is nature's way of recycling organic waste into valuable fertiliser. It is a natural biological process in which microorganisms such as bacteria and fungi break down organic matter. Composting is an easy process but needs to be well controlled to optimise the compost quality and to avoid undesirable odours or germs and loss of nutrients. An optimal composting process will also reduce the volume and weight of organic waste significantly as the composting process converts much of the biodegradable component to gaseous carbon dioxide.
Further Authors:
X. Martínez-Farré - ESAB-DEAB, Universitat Politècnica de Catalunya
The effectiveness of the composting process is dependent upon the environmental conditions present within the composting system, i.e., oxygen, temperature, moisture, material disturbance, organic matter and the size and activity of microbial populations. Among all the parameters, moisture and temperature are very helpful in process management. The content of water is given in order to allow microbial development, but always keeping aerobic conditions. Temperature is a consequence of the activity of these microorganisms that allows to higienisation of the material limiting the presence of pathogens and weed seeds. While the main biological and chemical parameters affecting the composting process are well known, the technological solutions available for monitoring and controlling the process are very limited. Temperature and moisture in the core of the material that is being composted are currently only measured from time to time and in a number of very limited points. Moreover, temperature is usually manually measured by inserting a probe, and the moisture is measured by extracting samples that need to be analysed in a laboratory. There is a clear need to provide composting operators with improved process control technology, especially in view of increasingly stringent and evolving regulations. Such regulations, along with market demands for high quality, stable and safe composting are clear drivers for bridging the current gaps in compost monitoring and control technology. The 3-year research COMPOBALL project (www.sensoball.eu) entitled Novel on-line composting monitoring system with grant agreement 243625 is funded by the European Commission and brings together 16 partners from 9 European countries. The aim is to develop a novel on-line wireless system for the measurement of temperature and humidity at various points in the composting material and to bring affordable wireless composting-sensors to the European composting industry.
Copyright: | © European Compost Network ECN e.V. |
Quelle: | Orbit 2012 (Juni 2012) |
Seiten: | 6 |
Preis: | € 6,00 |
Autor: | Ing Horst Müller Marga López |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau
der Wasserstoffinfrastruktur in Deutschland
Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens
- ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.
Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit