Composting is nature's way of recycling organic waste into valuable fertiliser. It is a natural biological process in which microorganisms such as bacteria and fungi break down organic matter. Composting is an easy process but needs to be well controlled to optimise the compost quality and to avoid undesirable odours or germs and loss of nutrients. An optimal composting process will also reduce the volume and weight of organic waste significantly as the composting process converts much of the biodegradable component to gaseous carbon dioxide.
Further Authors:
X. Martínez-Farré - ESAB-DEAB, Universitat Politècnica de Catalunya
The effectiveness of the composting process is dependent upon the environmental conditions present within the composting system, i.e., oxygen, temperature, moisture, material disturbance, organic matter and the size and activity of microbial populations. Among all the parameters, moisture and temperature are very helpful in process management. The content of water is given in order to allow microbial development, but always keeping aerobic conditions. Temperature is a consequence of the activity of these microorganisms that allows to higienisation of the material limiting the presence of pathogens and weed seeds. While the main biological and chemical parameters affecting the composting process are well known, the technological solutions available for monitoring and controlling the process are very limited. Temperature and moisture in the core of the material that is being composted are currently only measured from time to time and in a number of very limited points. Moreover, temperature is usually manually measured by inserting a probe, and the moisture is measured by extracting samples that need to be analysed in a laboratory. There is a clear need to provide composting operators with improved process control technology, especially in view of increasingly stringent and evolving regulations. Such regulations, along with market demands for high quality, stable and safe composting are clear drivers for bridging the current gaps in compost monitoring and control technology. The 3-year research COMPOBALL project (www.sensoball.eu) entitled Novel on-line composting monitoring system with grant agreement 243625 is funded by the European Commission and brings together 16 partners from 9 European countries. The aim is to develop a novel on-line wireless system for the measurement of temperature and humidity at various points in the composting material and to bring affordable wireless composting-sensors to the European composting industry.
Copyright: | © European Compost Network ECN e.V. |
Quelle: | Orbit 2012 (Juni 2012) |
Seiten: | 6 |
Preis: | € 0,00 |
Autor: | Ing Horst Müller Marga López |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Rechtliche und praktische Unsicherheiten bei der Durchführung des europäischen Klimaanpassungsrechts durch das Bundes- Klimaanpassungsgesetz (KAnG)
© Lexxion Verlagsgesellschaft mbH (6/2025)
In the context of the European Climate Law (EU) 2021/1119), the Governance Regulation (EU) 2018/1999 and the Nature Restoration Regulation (EU) 2024/1991, the KAnG came into force on July 1, 2024.
Transformatives Klimarecht: Raum, Zeit, Gesellschaft
© Lexxion Verlagsgesellschaft mbH (6/2025)
This article contends that climate law should be conceived as inherently transformative in a double sense. The law not only guides the necessary transformation of economy and society, but is itself undergoing transformation.
Maßnahmen zur Klimaanpassung sächsischer Talsperren
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (5/2025)
Die Landestalsperrenverwaltung des Freistaates Sachsen (LTV) betreibt aktuell insgesamt 87 Stauanlagen, darunter 25 Trinkwassertalsperren. Der Stauanlagenbestand ist historisch gewachsen und wurde für unterschiedliche Zwecke errichtet.