Prozesscharakteristik und Spurenelemente einer thermophilen Biogasanlagemit Rindergülle als Hauptsubstrat: Einfluss weiterer Temperaturerhöhung

Der Schwerpunkt dieses Projekts lag auf der Ammoniumtoleranz, Abbaueffizienz und den gelösten, bioverfügbaren Spurenelementkonzentrationen bei verschiedenen Temperaturen in drei parallelen Biogasreaktoren eines Milchlandwirts. Erhöhte thermophile Bedingungen sollten das Gesundheitsrisiko bei der Verwendung von Gärresten als Dünger vermindern, aber auch die Effizienz der gut gehenden Hofanlage weiter steigern. Allerdings gibt es aufgrund älterer Literatur über schwach belastete Anlagen eine allgemeine Furcht vor einer Ammoniakinhibierung und damit so gut wie keine thermophil betriebenen Gülle-Biogasanlagen in Deutschland. Wir zeigen, dass es thermophil mit um mehrere hundert Prozent effektiveren Raumzeitausbeuten geht, wenn man konventionelle Biogasanlagen damit vergleicht.

Biogasanlagen mit erhöhter Güllezugabe laufen unter thermophilen Bedingungen bei über 45 °C eher schlecht, da meist eine Ammoniakinhibierung vorliegt. Schon eine Ammoniakkonzentration von 150 mg/L wirkt inhibierend. Deshalb war es eine Herausforderung, eine thermophile Biogasanlage eines Milchbauern mit Rindergülle als Hauptsubstrat zu untersuchen. Der Fokus der Untersuchungen lag auf der Prozesseffektivität und den dabei verfügbaren Spurenelementen. Die Gesamtbiogasanlage produziert max. 190 kWel mit einer Substratzufuhr von 68,5 % Rindergülle, 25 % Mais, 5 % Gras und 1,5 % Rinderfestmist (9,3-9,95 Mg/Tag, 11,5-13.5 Tage Hydraulische Retentionszeit HRT). Die Biogasanlage besteht aus 3 parallel betriebenen 115m3 Fermentern, die durch einen gemeinsamen Substratmixer zur Homogenisierung des Substrats beschickt werden, sowie einemgemeinsamen Endlager (nicht temperiert) mit einem Volumen von 1000m3. Zwei Fermenter wurden mit einer festen Temperatur bei 51 und 53 °C als Referenz betrieben. Das Temperaturprogramm des dritten Fermenter lag zwischen 51 und 57 °C, wobei die Temperatur in 0,5 °C Schritten erhöht und bei 51, 53, 55 sowie 57 °C für einen längeren Zeitraum gehalten und untersucht wurde. Im Mittel wurde eine spezifische Biogasproduktion von 0,55 m³/ kg oTS, einer Methankonzentration von 52-54% bei einer permanenten organischen Beladung von 14 kg oTS/m³/d und einem pH-Wert zwischen 7,6-8,0 erreicht. Der Ammoniak (200-300 mg/L bei 51 °C, 300-500 mg/L bei 57 °C) und Ammoniumlevel (1500-2300 mg/L) waren hoch, wobei die Gasproduktion zwischen 51-57 °C (bis 59 °C getestet) offenbar nicht von der Ammoniakkonzentration beeinflusst war. Die Ergebnisse zeigten, dass die Abbaueffektivität des Substrats bei 57 °C besser als bei 51 °C war. Die gelösten Spurenelemente der Fermenter wurden ebenfalls jede Woche analysiert. So lagen die Konzentrationen von Mn und Zn zwischen 1-5mg/L, für Cu zwischen 0,1-0,22 mg/L, für Co und Ni zwischen 0,02- 0,2 mg/L und bei Se und W lag der Bereich zwischen 0,001 und 0,04 (limitiert). Die Untersuchungen sind noch nicht beendet und werden fortgeführt.



Copyright: © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock
Quelle: 8. Rostocker Bioenergieforum (Juni 2014)
Seiten: 5
Preis: € 2,50
Autor: Dipl.-Ing. Sebastian Antonczyk
Richard Arthur
Prof. Dr. Paul Scherer
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren



Diese Fachartikel könnten Sie auch interessieren:

Flexible Stromvermarktung aus Biogasanlagen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2023)
Die SK Verbundenergie AG ist ein Dienstleistungsunternehmen für die Steuerung und Optimierung von Biogas-, Wind-, PV-Anlagen und Batterien. Das virtuelle Kraftwerk der SKVE vereinfacht durch einen hohen Automatisierungsgrad den Betrieb der Anlage und erwirtschaftet zusätzliche Erlöse durch eine in Echtzeit optimierte, bedarfsgerechte Stromproduktion.

Grüne Wasserstoffproduktion durch Biogasanlagen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2023)
Wasserstofftechnologien bieten einen Lösungsansatz im Kampf gegen den Klimawandel. In Verbindung mit Sektorenkopplung bieten sie das Potenzial, jene Sektoren zu dekarbonisieren, die nicht elektrifiziert werden können (z. B. die chemische Industrie, die Stahlindustrie usw.).

Energie und Kompost - Kompostwerk Anröchte
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2023)
Die gesetzlichen Rahmenbedingungen, hier vor allem die TA Luft, aber auch das Alter der Anlage machten eine neue Investition notwendig.

Permanente Speicherung von CO2 aus Biogasanlagen in mineralischen Abfallströmen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2023)
Zur Begrenzung der globalen Erwärmung auf 1,5 °C müssen laut IPCC Netto-Null-Emissionen bis 2050 erreicht werden. Neben beträchtlichen Emissionsreduktionen wird dieses Ziel nur durch den weltweiten Einsatz von Lösungen zur CO2-Entfernung möglich sein - und zwar im Umfang von Milliarden Tonnen. Neustark ist ein führender Anbieter in diesem schnell wachsenden Markt: Wir haben eine Lösung zur dauerhaften Speicherung von CO2 aus der Luft in recycelten mineralischen Abfällen, wie Abbruchbeton, entwickelt.

LNG-Beschleunigungsgesetz als Blaupause?
© Lexxion Verlagsgesellschaft mbH (6/2023)
Terminals zurRegasifizierung von Flüssigerdgas, auch LNGTerminals genannt, machen seit gut einem Jahr in Deutschland (wieder) Schlagzeilen. LNG steht für 'Liquified Natural Gas' - zu Deutsch Flüssigerdgas, also Erdgas, das auf - 162°C heruntergekühlt wird. Das Flüssigerdgas ist gut transportfähig, da das Volumen dabei im Vergleich zum gasförmigen Zustand um das Sechshundertfache reduziert wird. LNG hat den Vorteil, dass es ohne Pipelines, mithilfe von Schiffen, nach Deutschland transportiert werden kann.Mit LNG-Terminals kann das LNG zurück in Erdgas umgewandelt werden.

Login

Literaturtip:
 
zu www.energiefachbuchhandel.de
 

Innovationen
im Bereich Biogas
präsentiert von:
 

und: