Combustion control in waste incineration applications has been the subject of intensive discussion and numerous publications over the past two decades. This can be explained by the heterogeneous material stream to be burned which not only fluctuates in its composition, moisture content and inert fraction but also varies greatly from season to season and region to region. As these fluctuations in the waste quality are stochastically distributed they do not lend themselves to statistical prediction nor can they be adequately determined by measurements during process operation. In this respect, control of the waste combustion process for a constant heat output continues to pose a challenge.
This paper covers two decades in the development history of combustion control concepts and its results. Many a concept that proved to be promising at first sight failed to produce the desired outcome. In order to strike a balance between measuring technology and signal reliability and control system complexity while at the same time ensuring customer acceptance and the desired uniform steam production rate, compromises in evitably have to bemade. Experience has shown that a sound and simple control concept can yield excellent results and gain customer acceptance.
Further improvement potential can be tapped when pursuing the request for a higher level of automation through automated load readjustment, for instance. Furthermore, the online calculation of the calorific value requires further optimization. An alternative approach proposed to this effect is the inverse combustion calculation method that has been known since 2000. However, results allowing a conclusion to the validity of this approach in operating practice are hardly available so far.
Copyright: | © Thomé-Kozmiensky Verlag GmbH |
Quelle: | Waste Management, Volume 3 (Oktober 2012) |
Seiten: | 15 |
Preis: | € 0,00 |
Autor: | Dr.-Ing. Jens Sohnemann Dr.-Ing. Walter Schäfers |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Rechtliche und praktische Unsicherheiten bei der Durchführung des europäischen Klimaanpassungsrechts durch das Bundes- Klimaanpassungsgesetz (KAnG)
© Lexxion Verlagsgesellschaft mbH (6/2025)
In the context of the European Climate Law (EU) 2021/1119), the Governance Regulation (EU) 2018/1999 and the Nature Restoration Regulation (EU) 2024/1991, the KAnG came into force on July 1, 2024.
Transformatives Klimarecht: Raum, Zeit, Gesellschaft
© Lexxion Verlagsgesellschaft mbH (6/2025)
This article contends that climate law should be conceived as inherently transformative in a double sense. The law not only guides the necessary transformation of economy and society, but is itself undergoing transformation.
Maßnahmen zur Klimaanpassung sächsischer Talsperren
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (5/2025)
Die Landestalsperrenverwaltung des Freistaates Sachsen (LTV) betreibt aktuell insgesamt 87 Stauanlagen, darunter 25 Trinkwassertalsperren. Der Stauanlagenbestand ist historisch gewachsen und wurde für unterschiedliche Zwecke errichtet.