Primärseitige Emissionsminderung an Biomasse-Kleinfeuerungsanlagen

In Deutschland wird der größte Anteil der aus erneuerbaren Energien bereitgestellten Wärme unter Verwendung biogener Festbrennstoffe in Kleinfeuerungsanlagen erzeugt. Bei einem Großteil der am Markt angebotenen Kleinfeuerungsanlagen besteht im Hinblick auf die Emissionen noch Optimierungspotenzial. Aus den durch die Novellierung der 1. BImSchV stufenweise verschärften Emissionsgrenzwerten ergibt sich zudem für verschiedene Anlagen die Notwendigkeit des Einsatzes von Emissionsminderungsmaßnahmen. Da der Einsatz sekundärer Maßnahmen häufig mit einem hohen technischen und finanziellen Aufwand verbunden ist, müssen vor allem bei Anlagen im kleinen Leistungsbereich zunächst alle Möglichkeiten einer primären Emissionsminderung ausgeschöpft werden. Um die Wirksamkeit verschiedener feuerungsseitiger Primärmaßnahmen zu ermitteln, wurden am DBFZ Untersuchungen an einem manuell beschickten Scheitholzkessel und einer automatischen Kleinfeuerungsanlage durchgeführt.

Bei vielen am Markt angebotenen Kleinfeuerungsanlagen für Biomassebrennstoffe kann der Ausstoß von Schadstoffen durch relativ einfach umsetzbare primäre Maßnahmen verringert werden. Neben der Variation der Regelungsparameter bestehen durch konstruktive Änderungen sowie den Einbau von Katalysatorsystemen verschiedene Möglichkeiten, Emissionen wie Kohlenstoffmonoxid (CO), Kohlenwasserstoffe (VOC) und Feinstaub signifikant zu reduzieren. Um das primärseitige Emissionsminderungspotenzial zu ermitteln, wurden Untersuchungen an einem manuell beschickten Scheitholzkessel mit oberem Abbrand und einer automatischen Kleinfeuerungsanlage mit wassergekühltem Brennerkopf durchgeführt. Bei dem Scheitholzkessel konnte durch Integration eines katalytisch beschichteten Wabenkörpers und einer einfachen Unterdruckregelung eine erhebliche Reduktion der CO- und VOC-Emissionen erreicht werden. An der automatisch beschickten Anlage konnte der Schadstoffausstoß durch Anpassung der Regelungsparameter für verschiedene Biomassebrennstoffe verringert werden.



Copyright: © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock
Quelle: 6. Rostocker Bioenergieforum (Juni 2012)
Seiten: 5
Preis: € 0,00
Autor: Dipl.-Uwt. Mario König
Dr. Ingo Hartmann
 
 Artikel nach Login kostenfrei anzeigen
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.