Our modern industrial society is facing serious challenges arising from the world’s growing need for energy and the predicted climate change. Energy supply as the biggest source of carbon dioxide emissions will have to undergo a radical transition towards sustainability over the next few decades.
If global warming is to remain below 2 °C with respect to pre-industrial times, the atmospheric concentration of CO2 has to be limited. Since the power sector is responsible for a relatively large portion of total greenhouse gas emissions, special attention should be given to its decarbonization. Thus, fossil fuels must be substituted by low or zero emission renewable energy carriers. These include biomass and hydro power, with solar and wind power as the leading energy sources of the future. As biomass is facing issues with conflicting land use and big hydro power projects are often met with resistance within the population, the long-term growth potentials of these technologies remain limited. Wind and solar energy plants on the other hand can be erected with fewer restrictions wherever the conditions are favorable. The amount of energy supplied by 100 % renewables can fluctuate widely.
In a so-called "electricity-based" infrastructure, large-scale facilities for conversion and storage of excess energy have to be implemented in order to ensure a reliable energy supply. Hydrogen from the electrolysis of water and carbon dioxide from industrial processes or refined from air can serve as raw materials for the production of hydrocarbons. In addition, this conversion of electricity into chemical energy carriers like methane opens up the possibility of supplying the sectors of mobility, raw-material production and heat with clean energy. While certain modes of transport like individual motor car traffic can easily be electrified, others like heavy duty traffic will still require liquid fuels due to their high energy density. These fuels can be supplied through conversion processes based on regenerative electricity. Similarly, other conversion products can be used as input for raw-material production.
Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
Quelle: | Depotech 2012 (November 2012) |
Seiten: | 8 |
Preis: | € 4,00 |
Autor: | M.Sc. Dipl.-Ing. (FH) Sebastian Egner Dipl.-Ing. Wolfgang Krätschmer Prof. Dr.-Ing. Martin Faulstich |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau
der Wasserstoffinfrastruktur in Deutschland
Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens
- ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.
Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit