Organic contaminants such as tar-oil derived pollutants are frequently encountered in the subsurface at industrial sites. Despite their hydrophobicity, toxicity and thus, their severe effects on the environment and public health, aromatic hydrocarbons, including tar-oil derived polycyclic aromatic hydrocarbons (PAH) can efficiently be detoxified by naturally occurring soil microorganisms.
In practice, besides the lack of suitable environmental conditions, the diffusion and strong sorption of PAH to the soil matrix is often found to inhibit pollutant degradation. Strongly sequestered contaminants are inaccessible for microbial degradation processes. While nutrients and electron acceptors can be administered in engineered processes or ‘bioremediation’ in- and ex-situ to support microbial contaminant degradation in contaminated soils, few practical methods exist to increase the contaminant fraction accessible to degradative processes. The contributions of accessible and inaccessible pollutant fractions in soils will, however, eventually determine the potential success of bioremediation measures for historically contaminated matrices.
The use of plant lipids, specifically vegetable oils, as mild biocompatible extractants for bioaccessibility-limited soils was investigated in several studies. The results indicate that PAH ac-cessibility and degradation in industrial soils can be increased by up to 40 % by adding 1 % (w/w) of vegetable triglycerides. In order to cope with economic and ethic issues, the use of thermally stressed plant lipids, as present in waste cooking oil, for PAH extraction was also in-vestigated. Using artificially stressed oils and representative samples collected from a waste cooking oil collection centre, the influence of changed viscosity, saturation and lipid acidity on the heated oils’ extraction properties were tested. Thermally stressed oils had slightly reduced extraction efficiency for PAH, most likely due to their increased viscosity. For an engineered application, e.g. as amendments in ex-situ soil bioremediation, these differences are, however, most likely negligible.
The present study indicates that thermally stressed plant lipids, such as waste cooking oils, can efficiently be used to increase the efficacy of ex-situ bioremediation efforts to detoxify PAH-contaminated soils.
Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
Quelle: | Depotech 2012 (November 2012) |
Seiten: | 6 |
Preis: | € 3,00 |
Autor: | Kerstin Scherr Marion Sumetzberger-Hasinger Prof.Dr. Andreas Paul Loibner |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.