In this report, selected use cases, which represent simulated mechanical-biological treatment processes (MBT) for mixed municipal and commercial waste as they are used in practice, are modelled and evaluated in terms of their climate relevance: use cases "A" (partial digestion), use cases "B" (rotting processes with an aerobic biological intensive rotting stage and an aerobic biological post-rotting stage) and use cases "C" (drying processes). For each use cases, the exhaust air treatment systems were modelled as following: RTO only, biofilter only and RTO in combination with biofilter.
To evaluate the climate relevance, direct emissions (arising at the site of the facility) and indirect emissions associated with the energy supply (during the upstream chain) were considered. The production of ammonium sulphate (ASL) in the acid scrubber was taken into account as a climate-relevant credit, as was the production of electricity in those process options which included digestion.
Input data relating to crude gas concentrations and loads, as well as the data used on the operation of the mechanical biological systems and exhaust air treatment devices, are based on experience and continuous measurements carried out at a large number of mechanical biological treatment facilities in Germany. In Austria, hardly any continuous measurement data were available on operations and emissions, which is why no such data could be included in the calculations.
One of the results shows that for MBT processes where exhaust air treatment systems with RTO only or in combination with biofilter are used, compliance with the limit values for TOC of the Guideline on the MBT is achieved.
Compared with the use cases B and C, the use cases "A" (partial digestion) achieve the best overall balances in terms of climate relevance as a result of the electricity produced from biogas utilisation which can be counted as a credit.
Considering the selected system boundaries and bearing in mind that climate impacts should be kept low, compliance with the recommended values of the Guideline on the Mechanical Biological Treatment of Waste can only be achieved when using an exhaust air treatment system which combines RTO & biofilter.
Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
Quelle: | Depotech 2012 (November 2012) |
Seiten: | 4 |
Preis: | € 2,00 |
Autor: | Dipl.-Ing. Christian Neubauer Dr. Christoph Lampert |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau
der Wasserstoffinfrastruktur in Deutschland
Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens
- ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.
Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit