Wasser als Energiespeicher - neue Ideen und Konzepte

Die Speicherung elektrischer Energie hat große Bedeutung für den Ausgleich der Schwankungen zwischen Strombedarf und Stromproduktion. Infolge der in Mitteleuropa massiv zunehmenden Einspeisungen von Strom aus erneuerbaren Energien und dem politischen Entschluss Deutschlands, aus der Atomkraft bis zum Jahre 2022 vollständig auszusteigen, steigt der Speicherbedarf weiter an. Die wichtigste Technologie für die großtechnische Speicherung elektrischer Energie ist die Pumpspeicherung. Andere Speichermethoden weisen im Vergleich erhebliche Nachteile auf. Eine Reihe von neuen Ideen und Konzepte zur Nutzung von Wasser als Energiespeicher jenseits konventioneller Pumpspeicher liegt bereits vor. Gegenwärtig werden z. B. an der Universität Innsbruck hydraulische Großenergiespeicher nach den Power-Tower- und Buoyant-Energy-Konzepten entwickelt.

Europas Speicherbedarf an elektrischer Energie steigt aufgrund der zunehmenden Versorgung aus erneuerbaren Quellen, wie Wind-und Solarenergie, die naturgemäß einer hohen Volatilität unterliegen, weiter an. Der vorliegende Beitrag gibt einen kurzen Überblick über mögliche Speichermethoden unter Verwendung von Wasser als Speichermedium. Konventionelle Pumpspeicherwerke sind seit langem erprobt und wirtschaftlich erfolgreich. Die für einen weiteren Ausbau verbleibenden Standorte sind jedoch begrenzt. Neue Konzepte, die unabhängig von topografischen Gegebenheiten zur Anwendung kommen können, wurden entwickelt und werden weiter untersucht. Dazu zählen das Konzept Power Tower (hydraulischer Großenergiespeicher) und das Konzept Buoyant Energy (schwimmende hydraulische Energiespeicher), die am Arbeitsbereich Wasserbau der Universität Innsbruck wissenschaftlich untersucht werden. Die Wirtschaftlichkeit von Energiespeichern hängt stark von der politischen Entwicklung der nahen Zukunft ab. Wenn Anreize geboten werden, die eine gleichmäßige Einspeisung von Energie ins Netz belohnen, werden neue Speichermethoden rentabel.



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft 7-8 / 2012 (Juli 2012)
Seiten: 5
Preis: € 10,90
Autor: Univ.-Prof. Dr.-Ing. habil. Markus Aufleger
Dipl.-Ing. Dr.techn. Barbara Brinkmeier
Dipl.-Ing. Robert Klar
Valerie Neisch
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.