Physikalische Modellversuche zur Untersuchung des Einflusses von Biofilm auf die Sohlenstabilität

Durch das gesteigerte Interesse an morphologischen und ökologischen Fragestellungen rückt der Einfluss biologischen Bewuchses auf die Sohlenstabilität immer mehr in den Fokus aktueller Forschung. Der natürlich gewachsene Biofilm hat einen großen Anteil an der Stabilisierung und damit auch an den Remobilisierungsprozessen von Schadstoffen. Da die Stabilität sowohl von biologischen als auch von physiko-chemischen und hydraulischen Randbedingungen abhängt, wird im hier vorgestellten DFG-Projekt zur Untersuchung des Einflusses von biologischem Aufwuchs auf die Sedimentstabilität ein interdisziplinärer Ansatz verfolgt.

Das Ziel des DFG-Projekts 'Ecosystem engineering: Sediment entrainment and flocculation mediated by microbial produced extracellular polymeric substances (EPS)†ist, den Einfluss von Biofilmaufwuchs an der Gewässersohle auf die Erosionsstabilität zu ermitteln. Hierzu ist ein grundlegendes Verständnis der Zusammenhänge zwischen biologischen und hydrodynamischen Prozessen notwendig, welches später als Grundlage für die Entwicklung eines numerischen Modells zur Erosionsstabilität dienen kann.
Der Aufwuchs des Biofilms wird hierzu in speziell konstruierten Versuchsrinnen, welche mit Süßwasser beschickt werden, unter unterschiedlichen Randbedingungen vorgenommen. Als Aufwuchsfläche für den Biofilm dient künstliches Sediment (Glas-Kugeln, D ~ 63 μm,), welches zu biologisch-chemischen Analysen und zu Stabilitätsmessungen entnommen werden kann. Erkenntnisse aus der Konstruktion einer Testrinne (Strömungsfeld, Gebrauchstauglichkeit) fließen in die Konstruktion der endgültig zum Einsatz kommenden Versuchsrinnen ein.
Sowohl das Wachstum als auch die Stoffwechselprozesse im Biofilm werden durch externe Randbedingungen bestimmt. Im hier vorgestellten Projekt werden dazu zwei der als maßgeblich identifizierten Randbedingungen (Sohlenschubspannung und Lichtintensität) während der Aufwuchsphase in einem physikalischen Modellversuch variiert. Der Einfluss des so aufgewachsenen Biofilms auf die Stabilität feiner Sedimente wird in regelmäßigen Abständen über 3 Wochen bestimmt.
Bei einem Vorversuch wurden nach zwei Wochen Wachstum um 170 % erhöhte kritische Sohlenschubspannungen durch Aufwuchs eines Biofilms auf dem Sediment erreicht. Dieses Ergebnis unterstreicht die Wichtigkeit der Biostabilisierung für morphologische Prozesse.
Die Erosion feiner Sedimente ist eng verbunden mit der Remobilisierung von Schadstoffen, so dass in der weitergehenden Forschung diese Thematik behandelt werden wird.



Copyright: © Springer Vieweg | Springer Fachmedien Wiesbaden GmbH
Quelle: Wasserwirtschaft 6 / 2012 (Juni 2012)
Seiten: 5
Preis: € 10,90
Autor: Dipl.-Ing. Moritz Thom
M. Sc. Holger Schmidt
Dr. rer. nat. Sabine Gerbersdorf
Prof. Dr.-Ing. Silke Wieprecht
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Bedeutung und Grenzen der Produktverantwortung für den Klimaschutz
© Lexxion Verlagsgesellschaft mbH (6/2024)
Klimaschutz prägt das Kreislaufwirtschafts- und Abfallrecht durchgehend. Er spielt etwa eine mehrfache Rolle bei der Zulassung von Abfallentsorgungsanlagen.1 Umgekehrt hat die Kreislaufwirtschaft eine sehr bedeutsame Rolle für den Klimaschutz. Das BVerfG spricht in seinem Klimabeschluss eigens die Änderung von Produktionsverfahren zur Klimaneutralität an: Der Gesetzgeber muss u.a. frühzeitig aufzeigen, welche Produkte erheblich umzugestalten sind. Zwar hat er dabei eine weitgehende Gestaltungsfreiheit. Jedoch ist eine Politik zu entwickeln, die insgesamt die selbst gesetzten Klimaziele zu erreichen verspricht.

Pumpspeicher - Besser als ihr Ruf?
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (4/2024)
Gemäß der Taxonomie-Verordnung müssen Pumpspeicher als einzige Energiespeichertechnologie nachweisen, dass ihre Treibhausgasemissionen während ihres Lebenszyklus geringer als 100 g CO2 pro kWh sind. Nachfolgend werden Lebenszyklusanalysen eines Pumpspeichers, einer Batterie sowie eines Wasserstoffspeichers durchgeführt und miteinander verglichen. Darüber hinaus wird auf den zukünftigen Rohstoffbedarf sowie geo-, ressourcen- und industriepolitische Herausforderungen durch die neuen Energiespeichertechnologien hingewiesen.

Erfahrungen bei der Beratung von Vergärungs- und Kompostierungsanlagen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2024)
Die Verwendung von Biogut- und Grüngutkompost ist eine Möglichkeit, Nährstoffdefizite im Ökolandbau zu vermeiden sowie die Bodenfruchtbarkeit zu erhalten und sogar zu steigern.