Zweistufige Verfahren zur Biogaserzeugung zeichnen sich gegenüber einstufigen Prozessen durch höhere Umsatzraten, eine höhere Prozessstabilität sowie eine verbesserte Prozesskontrolle aus. Die apparatetechnische und somit gleichzeitig prozesstechnische Trennung der Teilprozesse Hydrolyse/Acidogenese und Acetogenese/ Methanogenese ermöglicht die Anpassung des mikrobiellen Milieus an die Anforderungen und Toleranzbereiche der jeweils vorherrschenden Mikroflora. Aufgrund der sehr unterschiedlichen Ansprüche der hydrolysierenden/säurebildenden und acetogenen/methanogenen Mikroorganismen (hinsichtlich pH-Wert, Temperatur, O2-Gehalt) bedingen optimale Bedingungen in beiden Prozessstufen eine hohe mikrobielle sowie enzymatische Aktivität und einen entsprechend hohen Substratumsatz. In Abhängigkeit vom Methanisierungssystem können sehr hohe Belastungsraten und entsprechend geringe Verweilzeiten in dieser Prozessstufe realisiert werden.
Zweistufige Vergärungssysteme sind aus Gründen der Inokulation als auch aus ökonomischen Gründen der Wasserführung in der Regel durch Prozesswasserkreisläufe miteinander verknüpft, womit ein Eintrag Methanogener in die Hydrolyse-/Versäuerungsstufe fortwährend besteht. Begünstigt wird dieser Effekt noch durch die oftmals praktizierte Animpfstrategie der Gärrestnutzung in der Hydrolysestufe. Eine strikte Trennung der Teilprozesse erfordert somit eine exakte Steuerung des Hydrolysebetriebes über relevante Prozessparameter, um unbeabsichtigte Methanbildungen in der ersten Prozessstufe zu vermeiden [7]. In Abhängigkeit vom Substrat, der Prozessführung und mit der Zielstellung der Realisierung eines hohen Abbaugrades kann eine sichere Steuerung der Teilprozesse in der Praxis mitunter nur schwer umgesetzt werden [7]. Eine weitgehende Unterdrückung Methanogener in der Hydrolyse kann beispielsweise mit relativ geringem steuerungstechnischen Aufwand über den O2-Gehalt, durch eine offene Fahrweise der Hydrolyse erzielt werden. Mit Nutzung einer Perkolation wird dem System während des Vorganges Luftsauerstoff zugeführt, so dass eine geringe Aktivität methanogener Mikroorganismen vorliegt, jedoch andererseits auch ein aerober Substratabbau gefördert wird und somit z.T. erhebliche Energieverluste hervorgerufen werden. Um derartige energetische Verluste zu vermeiden, sind eine geschlossene Fahrweise der Hydrolyse und die Möglichkeit der Erfassung und Nutzung des Hydrolysegases zu bevorzugen.
Copyright: | © Institut für Abfall- und Kreislaufwirtschaft - TU Dresden |
Quelle: | 8. Biogastagung: Biogas aus festen Abfällen und Reststoffen (September 2011) |
Seiten: | 12 |
Preis: | € 6,00 |
Autor: | Jeannette Buschmann Prof. Dr.-Ing. habil. Günter Busch |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
carboliq® - Direktverölung gemischter Kunststoffabfälle
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2025)
Die Forderung nach Klimaneutralität dominiert die globale Diskussion über die Zukunft der Industriegesellschaft. Damit einher geht auch die Frage, wie der
Umgang mit Kunststoffen in Zukunft erfolgen wird.
Nutzungskonflikt zwischen Carbon-Capture-Anlagen und Fernwärme?
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2025)
Die EEW Energy from Waste GmbH (EEW) hat sich das Ziel gesetzt, bis 2045 klimaneutral zu werden. Mit 17 Standorten verfügt EEW über eine Verbrennungskapazität von ca. 5 Millionen Tonnen Abfall pro Jahr.
Abfall- und Kreislaufwirtschaft in Deutschland im internationalen Vergleich - Spitzenplatz oder nur noch Mittelmaß?
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2025)
Neben der Umstellung der künftigen Energieversorgung auf ein zu 100 % erneuerbares Energiesystem ist die Abfall- und Kreislaufwirtschaft die zweite zentrale Säule im Rahmen der globalen Transformation in eine klimaneutrale Wirtschaft und Gesellschaft.