Wasserstoffperoxid als Oxidationsmittel während der zwischengeschalteten aeroben Hydrolyse

In dem DBU geförderten Projekt soll der Einfluss von Sauerstoff auf mittel und schwer abbaubare Verbindungen im Biomüll untersucht werden. Nach einer ersten Vergärung mit kurzer Verweilzeit sind einfach abbaubare Verbindungen in Biogas umgesetzt worden, wohingegen mittel und schwer abbaubare Komponenten übrig bleiben. In einem zweiten Schritt wird der vorfermentierte Inhalt in einem getrennten Fermenter mit Sauerstoff begast. Durch das Einbringen von Sauerstoff werden aerobe Stoffwechselwege aktiviert, durch welche sich mittel und schwer abbaubare Verbindungen wie Cellulose und höhere Fette in niedermolekulare Bruchstücke spalten lassen. Diese werden in einem weiteren Schritt in den ersten oder einen weiteren anaeroben Behälter zurückgeführt.

Die Vergärung von organischem Material aus der Biomüllsammlung verursacht in der experimentellen Phase verschiedene Probleme. Die große Schwankungsbreite der Zusammensetzung und Inhomogenitäten im Biomüll werden durch unterschiedliche Sammelgebiete und den Jahreszeitenwechsel hervorgerufen. Hierdurch kommt es zu erheblichen Unterschieden im Biogaspotential zwischen verschiedenen Chargen. Dies erschwert die Aussage, ob die Mehr- oder Minderproduktion durch das Verfahren oder durch das Substrat hervorgerufen werden. Deshalb wurde ein Modellbiomüll entwickelt, der die Eigenschaften eines durchschnittlichen Biomülls sowohl in der Biogasausbeute als auch im zeitlichen Ablauf wiedergibt. Dieses Modellsubstrat besteht aus ganzjährig beziehbaren Feldfrüchten.
Biomüll enthält nicht nur leicht abbaubare Bestandteile wie Proteine und Stärke sondern auch Cellulose, Lignocellulose und Fette. Hydraulische Verweilzeiten von 10 bis 15 Tagen sind notwendig um Fette abzubauen [1- 3]. Lignocellulose und Hemicellulose sind anaerob nicht abbaubar. Durch den Einsatz aerober Stoffwechselwege soll die Bioverfügbarkeit dieser Stoffgruppen erhöht werden, dem eigentlichen Ziel der zwischengeschalteten aeroben Hydrolyse. Desweitern kann die Trennung von Prozessstufen zu einer Verringerung der Verweilzeit von bis zu 20% führen [4]. Eine Möglichkeit aerobe Stoffwechselwege zu aktivieren besteht in der Installierung einer aeroben Hydrolyse. In der flüssigen Phase treten aufgrund von Konzentrationsunterschieden aerobe und mircoaerobe Bereiche auf. Die Temperatur steigt während der Aerobisierung an, da aerobe Stoffwechselvorgänge schneller ablaufen und mehr Energie freisetzen als anaerobe. Aus diesem Grund wird die aerobe Hydrolyse häufig eingesetzt, um das Inputmaterial durch Eigenerhitzung auf die gewünschte Reaktortemperatur zu erwärmen und so Energie zum Aufheizen einzusparen.



Copyright: © TU Dresden - Institut für Abfall- und Kreislaufwirtschaft
Quelle: 8. Biogastagung: Biogas aus festen Abfällen und Reststoffen (September 2011)
Seiten: 6
Preis: € 0,00
Autor: Dipl.-Biotechnol. Timo Thiel
Prof. Dr.-Ing. Klaus Fricke
 
 Artikel nach Login kostenfrei anzeigen
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Hygienisierung und Trocknung von Gärresten - Erfahrungen mit dem Herhof-Belüftungssystem
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Die Herstellung von Qualitätskomposten aus Bioabfallgärresten stellt herkömmliche Kompostierungssysteme vor große Herausforderungen. Je nach Vergärungssystem müssen Hygienisierungsnachweise nach Bioabfallverordnung oder deutliche Veränderungen im Trockensubstanzgehalt zusätzlich zum organischen Abbau erzielt und nachgewiesen werden. Erfahrungen im Bereich Bioabfallkompostierung oder biologischer Trocknung von Restabfall fließen in die Umsetzung der Gärrestbehandlungssysteme mit ein. Anhand der kombinierten Vergärungs- und Kompostierungsanlagen in Cröbern und Bernburg werden die Ergebnisse und die Grenzen des Herhof-Belüftungssystems speziell im Hinblick auf Hygienisierung nach Bioabfallverordnung und Trocknung für die Kompostaufbereitung dargestellt.

Der Weg vom Gärrest zum Qualitätskompost - Erfahrungen in umgesetzten Anlagen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Die Erzeugung eines hochwertigen Qualitätskomposts ist vielfach ein Schlüssel zum wirtschaftlichen Erfolg einer Bioabfallbehandlungsanlage. Da jedoch die meisten Bioabfälle bei der Anlieferung in einer Behandlungsanlage immer noch einen sehr hohen Fremdstoff- und Verunreinigungsanteil aufweisen, ist neben einer effizienten biologischen Behandlung - in einer Kaskadennutzung bei hohem Biogasertrag und guter Aerobisierung und Nachrotte der Gärreste - die Abscheidung der Störstoffe in einer Kompostfeinaufbereitung der Schlüssel zu einem vermarktbaren Qualitätskompost.

TGV - Thöni Gärrestverwertung: Kompostierungstechnologie zur Behandlung von Gärresten
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Die TGV - Thöni Gärrestverwertung behandelt Gärreste aus Vergärungsanlagen und verarbeitet sie zu hochwertigem Kompost. Das System schließt die Lücke zwischen anaerober Vor- und aerober Nachbehandlung. Durch eine eigene Technologie werden Schnittstellen reduziert und Planung sowie Ausführung aus einer Hand ermöglicht.