Das Müllheizkraftwerk - ein optimaler Standort für die Errichtung einer Vergärungsanlagen

Bioabfallbehandlungsanlagen sind wesentliche und bisher wenig beachtete Quellen für die kritischen Treibhausgase Methan und Lachgas. Da die europäische Kommission über die Abfallrahmenrichtlinie auf eine getrennte Sammlung und Verwertung von Bioabfällen hinwirkt und darüber hinaus das novellierte Erneuerbare Energien Gesetz (EEG) der Bundesregierung die energetische Nutzung dieser Abfälle monetär fördert, wird sich diese Problematik aufgrund der zu erwartenden zunehmenden Kapazitäten zukünftig wohl weiter verschärfen.

Vor diesem Hintergrund hat die Arbeitsgemeinschaft der Betreiber thermischer Abfallbehandlungsanlagen in Bayern e.V. (ATAB) im Herbst 2009 das Konsortium ia GmbH, München und Qonversion, Bamberg mit einer umfassenden Studie zum Thema 'Optimierung der Ökoeffizienz von Vergärungsanlagen durch Integration in die thermische Abfallverwertung" beauftragt. Das Projekt wird vom Bayerischen Staatsministerium für Umwelt und Gesundheit finanziert. Ziel des Projektes ist es, die Integration von Bioabfallvergärungsanlagen (BGA) in den Betrieb und die Infrastruktur bestehender Abfallheizkraftwerke hinsichtlich der Ökoeffizienz im Vergleich mit der bisher üblichen baulichen Alleinstellung ('grüne Wiese-Anlagen") zu vergleichen und auftretende Effekte soweit als möglich zu quantifizieren. Die Betrachtung der Ökoeffizienz konzentriert sich in diesem Forschungsvorhaben auf mögliche energetische, ökologische und ökonomische Synergien. Im Fokus der durchgeführten Untersuchungen stehen die Minimierung der klimaschädlichen Treibhausgase Methan und Lachgas aus Bioabfallvergärungsanlagen, die Effizienzsteigerung der Bioabfallvergärung sowie die Optimierung des BGA-Betriebs hinsichtlich einer optimalen Kraft-Wärme-Kopplung durch gemeinsame Nutzung der Infrastruktur und der technischen Einrichtungen eines Abfallheizkraftwerks (AHKW).



Copyright: © Universität Kassel
Quelle: Praktikable Klimaschutz-Potentiale in der Abfallwirtschaft (2010) (Juni 2010)
Seiten: 11
Preis: € 5,50
Autor: Dipl.-Ing. Uwe Athmann
Dipl.-Ing.(TU) Werner P. Bauer
Dipl.-Umwelting. (FH) Thomas Kroner
Prof. Dr.-Ing. Peter Quicker
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.