Aufgrund der energiepolitischen Rahmenbedingungen nimmt die nergetische Nutzung von Biomasse in Deutschland weiterhin zu. Um den Nutzen einer solchen Technologie zu erhöhen und dauerhaft konkurrenzfähige Lösungen im Vergleich zu anderen Energiebereitstellungsarten zu finden, ist eine weitere Erhöhung der Energieeffizienz und Verfügbarkeit von Biomassekraftwerken, aber auch bei Anlagen zur thermischen Abfallverwertung, notwendig, weshalb noch immer ein großes Entwicklungspotenzial bei der Vermeidung von Korrosionen und der Abreinigung von Belägen an den Dampferzeugerwänden besteht.
Die Verbrennung von Biomasse und thermisch verwertbaren Abfallprodukten führt häufig zu besonders korrosionsfördernden Belägen an den Verdampferwänden, wodurch zeitgleich auch der in das Siedewasser eingekoppelte Wärmestrom an diesen Stellen durch schlechteren Wärmeübergang vom Gas auf die Membranwand sowie schlechtere Wärmeleitung im Belagsmaterial zum Teil sehr stark absinkt. Dies kann in der Folge größere Abgasverluste oder unzulässig hohe Materialbelastungen an anderen Stellen verursachen. Dies gilt es mit geeigneten Maßnahmen zu verhindern. Dazu werden die Beläge derzeit regelmäßig während der Anlagenstillstände größtenteils mechanisch abgereinigt. Um den Wartungs- sowie Instandhaltungsaufwand zu verringern und damit die Reisezeiten in Biomasseverbrennungsanlagen und deren Wirtschaftlichkeit zu erhöhen, sind Anlagenstillstände zur Reinigung und Beseitigung von Korrosionsschäden zu minimieren. Durch die vom Belag verursachte Behinderung der Wärmeauskopplung und den großen Temperaturgradienten zwischen Rohroberfläche und Abgas auf der einen Seite und das Auftreten eines Belagsmaterials mit korrosiven, temperaturabhängigen Eigenschaften auf der anderen, existiert ein qualitativer Zusammenhang zwischen Bildung und Aufbau von Belägen und dem auf die Verdampferwand auftreffenden Wärmestrom. Letzterer kann somit zum einen dazu genutzt werden, Beläge an Membranwänden von Dampferzeugern zu charakterisieren und den Zeitpunkt der Abreinigung festzulegen sowie zum anderen das Korrosionspotenzial des Belags abzuschätzen.
| Copyright: | © Veranstaltergemeinschaft Bilitewski-Faulstich-Urban |
| Quelle: | 15. Fachtagung Thermische Abfallbehandlung (März 2010) |
| Seiten: | 16 |
| Preis: | € 0,00 |
| Autor: | Professor Dr.-Ing. Michael Beckmann Dipl.-Ing. Sebastian Grahl Dr.-Ing. Sascha Krüger Dr. Gabriele Magel Dr. Wolfgang Spiegel |
| Artikel nach Login kostenfrei anzeigen | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Europäische Rechtsvorgaben und Auswirkungen auf die Bioabfallwirtschaft in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Bioabfälle machen 34 % der Siedlungsabfälle aus und bilden damit die größte Abfallfraktion im Siedlungsabfall in der EU. Rund 40 Millionen Tonnen Bioabfälle werden jährlich in der EU getrennt gesammelt und in ca. 4.500 Kompostierungs- und Vergärungsanlagen behandelt.
Vom Gärrest zum hochwertigen Gärprodukt - eine Einführung
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Auch mittel- bis langfristig steht zu erwarten, dass die Kaskade aus anaerober und aerober Behandlung Standard für die Biogutbehandlung sein wird.
Die Mischung macht‘s - Der Gärrestmischer in der Praxis
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2025)
Zur Nachbehandlung von Gärrest aus Bio- und Restabfall entwickelte Eggersmann den Gärrestmischer, der aus Gärresten und Zuschlagstoffen homogene, gut belüftbare Mischungen erzeugt. Damit wird den besonderen Anforderungen der Gärreste mit hohem Wassergehalt begegnet und eine effiziente Kompostierung ermöglicht.