The growth of the population in the last century, and the acknowledgment that the growth will continue, lead to various problems. One of the problems is the need to produce enough food to the entire population, witch will lead to an excessive use of the land, and to its impoverishment in nutrients and organic matter, soil physical conditions degradation, increasing problems with plagues and diseases, and environmental pollution due to fertilizers applications, among others.
Other problem is the increasing amount of residues produced by the population. These residues may be faced as a product that might help increase the soil value in organic matter, nutrients, water holding and erosion resistance, and at the same time solving the problem of what to do with them. Nitrogen (N) is an essential element to all organisms’ survival and growth, being present in essential compounds such as proteins, nucleic acids and other molecules, and it’s a very large part of organic residues composition. The application of organic residues to agricultural soils as a source of nitrogen (N) needs a better understanding of the processes involving N organic compounds mineralization. A good prediction of the amounts of N mineralized from the residues is an interesting issue, and also a valuable tool for the sustainable and rational use of these sources of nutrients to plants growth, while preserving the environment. Having all that into consideration, the objective of the present work is to know more about nitrogen mineralization, and finding if it’s possible to predict its availability from organic residues applied to soil. A quick and easy to perform waterlogged incubation experiment was developed, to investigate mineralization of nitrogen compounds in several different soils, with and without application of different organic residues (poultry manure and secondary pulp mill sludge). Soils tested were different in texture, organic matter content as well as in pH. A mild solubilising agent (H2O) was used to extract easily mineralizable N. After, the extraction suspensions were further incubated at 37ºC for 10 days and sampled over this period. Mineral N (NH4-N and NO3-N) was determined in all the soils tested. Both soils and soil - residues mixtures were analysed 0, 2, 5 and 10 days after the starting of the
experiment.
Copyright: | © European Compost Network ECN e.V. |
Quelle: | Orbit 2008 (Oktober 2008) |
Seiten: | 9 |
Preis: | € 0,00 |
Autor: | C.M.D.S. Cordovil A. Kokkonen |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Rechtliche und praktische Unsicherheiten bei der Durchführung des europäischen Klimaanpassungsrechts durch das Bundes- Klimaanpassungsgesetz (KAnG)
© Lexxion Verlagsgesellschaft mbH (6/2025)
In the context of the European Climate Law (EU) 2021/1119), the Governance Regulation (EU) 2018/1999 and the Nature Restoration Regulation (EU) 2024/1991, the KAnG came into force on July 1, 2024.
Transformatives Klimarecht: Raum, Zeit, Gesellschaft
© Lexxion Verlagsgesellschaft mbH (6/2025)
This article contends that climate law should be conceived as inherently transformative in a double sense. The law not only guides the necessary transformation of economy and society, but is itself undergoing transformation.
Maßnahmen zur Klimaanpassung sächsischer Talsperren
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (5/2025)
Die Landestalsperrenverwaltung des Freistaates Sachsen (LTV) betreibt aktuell insgesamt 87 Stauanlagen, darunter 25 Trinkwassertalsperren. Der Stauanlagenbestand ist historisch gewachsen und wurde für unterschiedliche Zwecke errichtet.