Die Überwachung der Gas- und Sickerwasseremissionen von tausenden existierenden und abgeschlossenen Deponien verbleibt eine zentrale Aufgabe auch für die kommenden Generationen. In vielen Entwicklungsländern ist die gängige Praxis der Abfallentsorgung immer noch Ablagerung in natürlichen Senken ohne jegliche Umweltschutzmaßnahmen, oft mit fatalen Folgen für die Umwelt und die Bevölkerung. Die technisch, ökonomisch und legislativ entwickelten Länder haben mittlerweile strikte Vorgaben für die Prävention bzw. Reduktion und Kontrolle der negativen Auswirkungen eingeführt. Allerdings wurden auch in den entwickelten Ländern die sog. Siedlungsabfalldeponien über Jahre hinweg gemischt sowohl mit Siedlungsals auch mit Industrieabfall gefüllt (Typ: Reaktionsdeponie).
Deponien als Bestandteil eines abfallwirtschaftlichen Konzeptes bedürfen einer Langzeit-Managementstrategie, die den Anforderungen für einen nachhaltigen Umweltschutz gerecht wird. Die Hausmülldeponien gelten einerseits als globale Emissionsquelle von Methan und Kohlendioxid, anderseits wird Methan aus Deponiegas als potentiell nutzbare nicht fossile Energiequelle gesehen. Die Biomasseumsetzung des gesamten Abfallkörpers und somit die nutzbare Methanausbeute können mittels innovativer Stabilisierungsverfahren weitgehend optimiert werden, die in Zukunft als wichtiger Bestandteil des langzeitigen Deponiemanagements funktionieren können. Der gegenwärtige Kenntnisstand bezüglich des Langzeitverhaltens von Deponien ist jedoch beschränkt. In diesem Beitrag wird ein Modell vorgestellt, das die Transport-, Umsetzungs- und Konsolidierungsprozesse in Abhängigkeit von der Zusammensetzung und Struktur des Deponiekörpers deterministisch prognostiziert und das Emissionsverhalten der Deponie abschätzt. Die Länge der Stilllegungs- und Nachsorgephase unter Berücksichtigung möglicher Szenarien der Stabilisierungsmaßnahmen sowie das Emissionsrisiko kann folglich vorab simuliert und die optimale Strategie gewählt werden. Das Modell ist somit prädestiniert, in das Langzeitmanagement der Deponie eingebunden zu werden.
| Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben |
| Quelle: | Depotech 2008 (November 2008) |
| Seiten: | 6 |
| Preis: | € 3,00 |
| Autor: | Dr.-Ing. Veronika Ustohalova |
| Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.
Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.
In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.