Die Biogastechnologie gewinnt immer mehr an Bedeutung. Dies ist begründet durch steigende Preise für fossile Energieträger und ein zunehmendes Bewusstsein zum Schutz des Klimas. In Deutschland verfünffachte sich die installierte elektrische Leistung von Biogasanlagen nach der Revision des Erneuerbaren Energie Gesetzes (EEG) im Jahre 2004 innerhalb von drei Jahren auf 1270 MW (FNR, 2008). Der Fachverband Biogas schätzt, dass diese Leistung bis 2020 auf bis zu 9500 MW steigen könnte, was ca. 17% der deutschen Stromerzeugung entspräche (Fachverband Biogas e.V., 2006).
Vor dem Hintergrund steigender Rohstoffpreise ergibt sich für viele Biogasanlagenbetreiber die wirtschaftliche Notwendigkeit, die Effizienz des Vergärungsprozesses zu steigern, und/oder Cosubstrate einzusetzen, die günstig zur Verfügung stehen. Viele Biogasanlagen werden allerdings aus Furcht vor Überlastungen des biologischen Systems nicht mit einer optimalen, hohen Raumbelastung betrieben. Häufige Gründe für Überlastungen, die zu mehrwöchigen Betriebsausfällen führen können, sind unzureichende Prozesskontrolle und schwankende Substratzusammensetzungen, die insbesondere bei der Mitbehandlung von Cosubstraten auftreten können. Eine weitere potentielle Störquelle stellen Schad- bzw. Störstoffe dar, die mit dem Substrat in den Reaktor gelangen können. Aufgrund der niedrigen Wachstumsraten der beteiligten Mikroorganismen und der genau einzuhaltenden Milieubedingungen kann es leicht zu Störungen des anaeroben Abbauprozesses kommen. Besonders bei kleinen Biogasanlagen, wo in vielen Fällen Substrat- und Betriebsparameter nur unzureichend erfasst bzw. gemessen werden, sind z.T. hohe betrieblich bedingte Ausfälle zu verzeichnen. Diese Anlagen werden häufig nach der Raumbelastung, der Verweilzeit oder nach Erfahrungswerten gefahren. Diese Steuerungsmethoden sind jedoch ungenau und können dazu führen, dass die Anlagen entweder unterbelastet oder überlastet werden. Eine dauernde Unterbelastung einer Biogasanlage führt ebenso wie das 'Umkippen' durch Überlastung zu wirtschaftlichen Schäden, da der Fermenter mit zu geringer Belastung gefahren wird und so Fermentervolumen und
damit Investition verschenkt wird.
Copyright: | © TU Dresden - Institut für Abfall- und Kreislaufwirtschaft |
Quelle: | 6. Fachtagung: Anaerobe biologische Abfallbehandlung (September 2008) |
Seiten: | 10 |
Preis: | € 0,00 |
Autor: | Dipl.-Ing. Olaf Bade |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.
Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.
In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.