Die biologische Behandlung von organischen Abfällen hat aufgrund der mikrobiellen Abbauprozesse zur Folge, dass klimawirksame Gase (Treibhausgase), wie Lachgas (Distickstoffmonoxid, N2O), Methan (CH4) und Stickstoffmonoxid (NO), gebildet werden können. Im Hinblick auf die Bilanzierung von gasförmigen Emissionen aus Kompostierungsprozessen sind darüber hinaus die Gaskomponenten Kohlendioxid (CO2), Ammoniak (NH3) und Non-Methane Volatile Organic Compounds (NMVOC) von Bedeutung (siehe dazu die NEC-Richtlinie).
Die Bildung der Treibhausgase Methan (CH4) und Lachgas (N2O) bei der Kompostierung von Bio- und Grünabfällen hängt im Wesentlichen vom C- und N-Gehalt im Ausgangsmaterial sowie von den Prozessbedingungen ab und weniger von der bautechnischen bzw. verfahrenstechnischen Ausstattung der Behandlungsanlage. Wie bisherige Ergebnisse zeigen, wird durch ein geschlossenes Rotteverfahren mit Abluftreinigung in einem Biofilter grundsätzlich keine Reduktion der beiden Treibhausgase erreicht. Die Einhausung als Maßnahme zur Treibhausgasreduktion ist daher nicht zu rechtfertigen. Mittlere Emissionsfaktoren liegen für CH4 zwischen 250 bis 1.000 g/Mg und für N2O zwischen 20 bis ca. 200 g/Mg. Vergärungsanlagen mit Nachrotte weisen einen deutlich höheren Emissionsfaktor für Methan von 2.000 bis 3.000 g/Mg auf. Gleiches gilt für NH3, welches aus der Nachrotte von Vergärungsanlagen in Größenordnungen von ca. 1.000 bis 2.000 g/Mg emittiert. Methan wird im Biofilter nur unwesentlich abgebaut und Lachgas sogar aus NH3-Umsetzungen im Biofilter neu gebildet. Sinnvoll kann daher eine Senke für NH3 sein (saure Wäsche) insbesondere bei der Behandlung der Nachrotteabluft von Vergärungsanlagen. Eine aktualisierte Abschätzung über die in Deutschland betriebenen Behandlungsanlagen (Input 8.300.000 Mg/a) führt zu einem Anteil von ca. 0,35 % an CO2-Äquivalenten aus CH4 und N2O am nationalen Gesamtausstoß an Treibhausgasen.
| Copyright: | © Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH |
| Quelle: | 20. Kasseler Abfallforum-2008 (April 2008) |
| Seiten: | 19 |
| Preis: | € 9,50 |
| Autor: | Prof. Dr.-Ing. Carsten Cuhls Dipl.-Ing. Birte Mähl |
| Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Wasserwiederverwendung für landwirtschaftliche und urbane Zwecke in Deutschland
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (11/2025)
Wasserwiederverwendung trägt zur Entlastung natürlicher Wasserressourcen bei. Die seit 2023 gültigen EU-Mindestanforderungen an Wasserwiederverwendung werden derzeit in deutsches Wasserrecht integriert. Das im Juli 2025 erschienene Merkblatt DWA-M 1200 erleichtert die praktische Umsetzung von Wasserwiederverwendung in Deutschland.
Wasserbau 2.0 - Biodiversität im Fokus
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (11/2025)
Innovative Betonsteine als Ersatz für natürliche Wasserbausteine können Vorteile beim ökologischen Fußabdruck, beim Bau, bei der Besiedlungsfähigkeit und sogar bei der Wiederverwendung bieten. Dargestellt werden die Entwicklung und mögliche Einsatzgebiete.
Talsperren - Essenziell fuer die Minderung der Klimawandelfolgen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Die Bedeutung von Talsperren und Wasserspeichern wird in diesem Beitrag im Kontext des Klimawandels und der steigenden globalen Wassernachfrage betrachtet. Die Diskrepanz zwischen Wassernachfrage und verfügbarer Speicherkapazität wächst aufgrund von Klimawandel, Bevölkerungswachstum und Rückgang der Süßwasservorräte. Viele große Talsperren weltweit sind über 50 Jahre alt, was zum Teil Bedenken hinsichtlich ihrer Standsicherheit und Verlandung des Stauseevolumens aufwirft. Die Verlandung ist ein weltweit zunehmendes Problem. Ohne nachhaltige Maßnahmen werden bis 2050 viele Stauseen im Mittel bis zu 50 % verlandet sein. Eine nachhaltige Wasserbewirtschaftung und Maßnahmen zur Minderung der Stauraumverlandung angesichts eines wachsenden globalen Wasserspeicherbedarfs sind unabdingbar.