The aim of this work was to design and develop a microarray (COMPOCHIP) to test for the presence of different bacteria in compost samples, and then to apply the COMPOCHIP microarray to 3 different composts at various maturation stages (2, 8 and 16 weeks).
Composting is an aerobic process by which organic materials are degraded through the activities of successive groups of microorganisms (Dees and Ghiorse, 2001). This naturally occurring and environmentally sound process for the disposal of waste products is gaining worldwide popularity and is of considerable economic importance. An efficient and satisfactory composting process is dependent on the presence of a high microbial diversity (Beffa et al., 1996), however, relatively little is known about the microorganisms involved, and their exact activities in the different phases of the composting process (Riddech et al., 2002). The use of molecular biology tools has resulted in a rapid increase in knowledge on the diversity and dynamics of the microbial communities of compost (Schloss et al., 2003, 2005; Tiquia, 2005; Alfreider et al., 2001), however, the tools to rapidly obtain an insight into the activities of microbes in a particular stage of the process are still lacking. Nucleic acid microarrays, or oligonucleotide microchips, represent one of the most recent advances in molecular technologies, allowing a high-throughput format for the parallel detection of 16S rRNA genes from an environmental sample (Bodrossy and Sessitsch, 2004). Microarray technology offers the possibility to analyse an entire array of microorganisms, concerning their presence or absence in a particular environmental sample in a single experiment. Microarrays can allow the parallel detection of up to several thousand microbial strains, species, genera or higher taxonomic groups in a single experiment (Loy et al., 2002; Peplies et al., 2003). In this study, we describe the application of the 16S rRNA-gene based COMPOCHIP microarray for the detection of different microbial communities in compost.
Copyright: | © IWWG International Waste Working Group |
Quelle: | Venice Conference 2006 (November 2006) |
Seiten: | 4 |
Preis: | € 0,00 |
Autor: | I. Franke-Whittle B. Knapp J. Fuchs R. Kaufmann H. Insam |
Artikel nach Login kostenfrei anzeigen | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Die Agrarumwelt- und Klimaschutzmaßnahmen 'Moorschonende Stauhaltung' und 'Anbau von Paludikulturen' in Mecklenburg-Vorpommern
Das Bundesland Mecklenburg-Vorpommern strebt bis 2040 Klimaneutralität an. Die Entwässerung der Moore verursacht knapp 30 % der landesweiten Treibhausgasemissionen - hier ist dringender Handlungsbedarf. Seit 2023 fördern AUKM-Programme die Anhebung von Wasserständen in landwirtschaftlich genutzten Mooren. Es zeigen sich viele Fortschritte, die aber weiterhin auf Genehmigungs-, Finanzierungs- und Koordinationshürden stoßen.
Paludikultur als Chance für Landwirtschaft, Bioökonomie und Klima
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Wirtschaftliche Perspektiven sind notwendig, um die Landwirtschaft für die Umstellung von entwässerter Moorboden-Bewirtschaftung auf nasse Moornutzung zu gewinnen. Paludikultur-Rohstoffe bieten großes Potenzial für Klima und Bioökonomie. Erste marktfähige Anwendungen zeigen, dass sich etwas bewegt.
Die Revitalisierung von Mooren erfordert ein angepasstes Nährstoffmanagement
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (8/2025)
Globale Herausforderungen wie der fortschreitende Verlust der biologischen Vielfalt, die Eutrophierung von Gewässern und die zunehmenden Treibhausgasemissionen erfordern die Wiederherstellung der natürlichen Funktionen von Mooren. Bis jedoch langjährig entwässerte und intensiv genutzte Moore wieder einen naturnahen Zustand erreichen und ihre landschaftsökologischen Funktionen vollständig erfüllen, können Jahrzehnte vergehen. Ein wesentlicher Grund dafür sind die hohen Nährstoffüberschüsse im vererdeten Oberboden.