Greenhouse gas emission at microbial community level during waste treatment

Microbiological processes are important drivers for greenhouse gas emissions during the treatment of domestic and agricultural wastes. In this paper some examples are given how greenhouse gas production might be reduced by regulating microbial processes. Biogas production from manure, organic wastes, and landfills are given as examples how methanization may be used to save fossil fuel. Methane oxidation, on the other hand, might alleviate the problem of methane already produced, or the conversion of aerobic wastewater treatment to anaerobic nitrogen elimination through the anammox process might reduce N2O release to the atmosphere. Changing the diet of ruminants, altering soil water potentials or a change of waste collection systems are other measures that might contribute to a reduction of carbon dioxide equivalents being emitted into the atmosphere.

It is microbial communities that take care of degradation of organic wastes in waste dumps, during composting, or during anaerobic digestion in a biogas reactor. In the ideal case, any organic wastes will eventually end up in the soil to further deliver nutrients to plants. Depending on the type of communities involved and on the chemo-physical conditions the end-products of the processes may be quite different. Some of these products are climate relevant gasses. According to Feller (2006) anthropogenic emissions, in particular methane emissions, date back - due to rice cultivation - as long as 8000 years. Methane still is a major contributor to  greenhouse gas emissions, around 40% are estimated to come from natural emissions, and 30% each come from biological and non-biological emissions related to human activities. Most of these natural sources of methane are directly linked to microorganisms (bogs, animal intestinal tracts, e.g. ruminants, termites, rice cultivation, manure or waste and wastewater treatment). The same is true for carbon dioxide, nitrous oxide and several other gasses that contribute to global warming. Each of these gasses does have a specific global warming potential (GWP) as regulated under the Kyoto Protocol.



Copyright: © IWWG International Waste Working Group
Quelle: Venice Conference 2006 (November 2006)
Seiten: 7
Preis: € 7,00
Autor: H. Insam
Dipl.-Ing. Dr. techn. Bernhard Wett
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Hochlauf der Wasserstoffwirtschaft
© Lexxion Verlagsgesellschaft mbH (8/2024)
Überblick über und Diskussion der Maßnahmen zum beschleunigten Ausbau der Wasserstoffinfrastruktur in Deutschland

Die innerstaatliche Umsetzung des Pariser Klimaschutzübereinkommens - ein Rechtsvergleich
© Lexxion Verlagsgesellschaft mbH (8/2024)
Like all public international law treaties, the Paris Climate Accords rely on national law for their implementation. The success of the agreement therefore depends, to a large extent, on the stepstaken or not taken by national governments and legislators as well as on the instruments and mechanisms chosen for this task. Against this background, the present article compares different approaches to the implementation of the Paris Agreement, using court decisions as a means to assess their (legal) effectiveness.

Klimaschutzrecht und Erzeugung erneuerbarer Energien in der Schweiz
© Lexxion Verlagsgesellschaft mbH (8/2024)
Verschachtelte Gesetzgebung unter politischer Ungewissheit