Sustainable landfill: the role of fail-safe engineering for landfill aftercare

The route to sustainable landfill while adhering to the Landfill Directive requires that ultimately, the waste site will reach equilibrium status. Chemical equilibrium is part of the requirements, but hydraulic equilibrium must also play a role. The research described in this paper was examined the behaviour of a waste site as it approaches the end of its managed postclosure period. In particular, the possibility of leachate overtopping, and the balance between risk to groundwater (from high leachate heads acting on the liner system) and to surface water has been assessed. Passive fail-safe engineering is not related to uncontrolled or un-consented abandonment but requires careful prediction of the way the pre-installed features control the approach to equilibrium after active management ends.

This research project examined the key issues associated with landfill closure that influences the ability of landfill to be included within a sustainable waste management system. Uncertainty will always surround the precise state of a landfill on its journey towards full stabilisation. While an understanding of the key parameters that govern its progress is important, it is highly desirable to add passive fail-safe systems to landfills so that failure of aftercare systems do not result in large scale environmental impact. A tentative definition of sustainable landfill was developed as part of the previous Equilibrium Study (Hall et al, 2007) albeit that it was framed within the concept of equilibrium status:“Equilibrium status is achieved when emissions of contaminants (liquid or gaseous) are at a rate that allows full natural attenuation of environmental impacts without further intervention or management, beyond a post closure period that is measured in decades rather than centuries. One of the findings of that work was the recognition that a landfill would, as a necessary consequence of its journey towards completion, must enter into a phase of hydraulic equilibrium. Essentially this means that current lined landfill will at some stage need controlled flooding that will form part of the preparation of the Site for formal completion. Once a site has been “delicensed” there will be no mandatory controls on leachate management and many sites will, in any event, fill with water at a rate likely to exceed the rate of leakage from the base. The ultimate consequence of this is that the leachate level will rise and may overtop the lining system resulting in a discharge to surface water as well as ongoing leakage affecting groundwater quality.



Copyright: © IWWG International Waste Working Group
Quelle: General Session B (Oktober 2007)
Seiten: 10
Preis: € 0,00
Autor: D.H. Hall
Dr. John McDougall
D. Drury
Nick Blakey
P. Braithwaite
 
 Artikel nach Login kostenfrei anzeigen
 Artikel weiterempfehlen
 Artikel nach Login kommentieren


Login

ASK - Unser Kooperationspartner
 
 


Unsere content-Partner
zum aktuellen Verzeichnis



Unsere 3 aktuellsten Fachartikel

Folgen und Perspektiven für eine klimaschonende Nutzung kohlenstoffreicher Böden in der Küstenregion Niedersachsens
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Der Schutz von Mooren und somit kohlenstoffreicher Böden ist ein zentrales Element erfolgreicher Klimaschutzstrategien. Am Beispiel der Küstenregion Niedersachsens wird deutlich, welche sozioökonomischen Folgen eine Wiedervernässung ohne wirtschaftliche Nutzungsperspektiven nach sich ziehen kann. Eine transformative Moornutzung kann nur gelingen, wenn wissenschaftliche Erkenntnisse, politische Rahmenbedingungen, soziale Akzeptanz und ökonomische Realitäten ineinandergreifen.

Zur Berücksichtigung globaler Klimafolgen bei der Zulassung von Abfallentsorgungsanlagen
© Lexxion Verlagsgesellschaft mbH (9/2025)
Der Text untersucht, wie Klimafolgenprüfungen bei Deponien und Abfallanlagen rechtlich einzuordnen sind. Während das UVPG großräumige Klimaauswirkungen fordert, lehnt das BVerwG deren Prüfung im Immissionsschutzrecht ab. Daraus ergeben sich offene Fragen zur Zulassung und planerischen Abwägung von Deponien.

In-situ-Erhebung der Schädigung von Fischen beim Durchgang großer Kaplan-Turbinen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (9/2025)
Schädigungen der heimischen Fischarten Aitel, Nase und Äsche bei der Turbinenpassage wurde mittels HI-Z-Tags an zwei mittelgroßen Laufkraftwerken untersucht. Bei juvenilen Fischen wurden Überlebensraten (48 h) zwischen 87 % und 94 % gefunden, bei den adulten Fischen zwischen 75 % und 90 %. Die geringeren Schädigungen am Murkraftwerk im Vergleich zum Draukraftwerk können plausibel durch eine geringere Zahl an Turbinenflügeln (vier statt fünf), eine geringere Fallhöhe und eine etwas langsamer laufende Turbine erklärt werden.