Composting has been used for many centuries as a system for disposal of organic waste, to produce organic fertilizer and to improve soil biological fertility. Composting technologies were described with technical details for the first time in the history by the Knights Templar in 1200 a.d. (de Bertoldi, 1999; Dailliez, 1981). To day, one might expect that since sciences like microbiology, soil biology and agronomy are well developed, composting processes should be fully optimized and perform at an exceptional level. Unfortunately, many composting plants continue to have serious problems in management and control of the process. The introduction of sophisticated mechanical technologies instead of improving the composting process have complicated its management.
Despite the variety of composting plants present on the market, the design and operation of composting systems to improve the rate of hygienization and of the process are still an unreached objective. The composting process evolves through a thermophilic phase followed by a mesophilic one. The metabolism of the microorganisms involved in the process is deeply disturbed by environmental changes, like temperature, oxygen level , moisture, C/N ratio, pH, nutrient availability and physical structure. For each environmental parameter, each microbial population has an optimum value at which the grow is maximum and a range (cardinal interval) inside which growth occurs but at lower degrees. The further the environmental conditions are from the optimum value the slower the growth. Outside this range the growth stops and sometimes the microorganisms die. Each microorganism involved in the composting process has a specific range of growth and an optimum value for each parameter, different from the other microorganisms. It is clearly impossible in a composting process to maintain simultaneously all the microorganisms in the best growing conditions, as it happens in continuous culture.
| Copyright: | © IWWG International Waste Working Group |
| Quelle: | Specialized Session D (Oktober 2007) |
| Seiten: | 8 |
| Preis: | € 0,00 |
| Autor: | Prof. Marco de Bertoldi |
| Artikel nach Login kostenfrei anzeigen | |
| Artikel weiterempfehlen | |
| Artikel nach Login kommentieren | |
Wasserwiederverwendung für landwirtschaftliche und urbane Zwecke in Deutschland
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (11/2025)
Wasserwiederverwendung trägt zur Entlastung natürlicher Wasserressourcen bei. Die seit 2023 gültigen EU-Mindestanforderungen an Wasserwiederverwendung werden derzeit in deutsches Wasserrecht integriert. Das im Juli 2025 erschienene Merkblatt DWA-M 1200 erleichtert die praktische Umsetzung von Wasserwiederverwendung in Deutschland.
Wasserbau 2.0 - Biodiversität im Fokus
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (11/2025)
Innovative Betonsteine als Ersatz für natürliche Wasserbausteine können Vorteile beim ökologischen Fußabdruck, beim Bau, bei der Besiedlungsfähigkeit und sogar bei der Wiederverwendung bieten. Dargestellt werden die Entwicklung und mögliche Einsatzgebiete.
Talsperren - Essenziell fuer die Minderung der Klimawandelfolgen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (10/2025)
Die Bedeutung von Talsperren und Wasserspeichern wird in diesem Beitrag im Kontext des Klimawandels und der steigenden globalen Wassernachfrage betrachtet. Die Diskrepanz zwischen Wassernachfrage und verfügbarer Speicherkapazität wächst aufgrund von Klimawandel, Bevölkerungswachstum und Rückgang der Süßwasservorräte. Viele große Talsperren weltweit sind über 50 Jahre alt, was zum Teil Bedenken hinsichtlich ihrer Standsicherheit und Verlandung des Stauseevolumens aufwirft. Die Verlandung ist ein weltweit zunehmendes Problem. Ohne nachhaltige Maßnahmen werden bis 2050 viele Stauseen im Mittel bis zu 50 % verlandet sein. Eine nachhaltige Wasserbewirtschaftung und Maßnahmen zur Minderung der Stauraumverlandung angesichts eines wachsenden globalen Wasserspeicherbedarfs sind unabdingbar.