Korrosionsprozesse an Dampferzeugern bei der Verbrennung von Kohlen, Biobrennstoffen und besonders von Abfällen sind seit langem bekannt. Sie werden im Wesentlichen auf hohe Chlorkonzentrationen im Brennstoff zurückgeführt.
Aggressive chemische Verbindungen sind die gasförmigen Chlorbindungsformen (Cl2 und HCl sowie NaCl, KCl, CaCl2 und Schwermetallchloride). Hohe Korrosionsraten sind dann zu erwarten, wenn durch chemische Reaktionen Cl- freigesetzt wird und in statu nascendi für die Reaktionen verfügbar ist.
Die wesentlichen Reaktionsprodukte auf den Dampferzeugeroberflächen sind FeCl3 und FeCl2, die bei den Reaktionstemperaturen bereits hohe Dampfdrücke aufweisen. Sie entstehen durch Reaktion mit den Cl-Verbindungen und gehen in die Gasphase über.
In technischen Prozessen laufen die chemischen Reaktionen simultan ab. Die Konzentrationen der Reaktionspartner verändern sich vom eingeführten Brennstoff über den Rauchgasweg und in den Ablagerungen auf den Dampferzeugerrohren. Wie die Untersuchungen der Reaktionsflächen zeigen, werden in den Ablagerungen hohe Konzentrationen von Chloriden und Sulfaten gefunden, die eutektische Schmelzen bilden und Ursache der Salzschmelzenkorrosion sind. Unter Ablagerungen auf Dampferzeugerheizflächen werden Abtragungen durch Eisenchloridbildung und die Auflösung der Oberflächen in Salzschmelzen gemeinsam beobachtet.
Thermodynamische Berechnungen der Reaktionsmechanismen beschreiben einen Gleichgewichtszustand der chemischen Verbindungen in Abhängigkeit von der Konzentration und der jeweiligen Temperatur. Sie sind nicht in der Lage, die Dynamik der Prozesse abzubilden. Ausreichende Informationen aus Untersuchungen an technischen Anlagen erlauben es aber, quasi ein Pfropfenströmungsmodell aufeinander folgender Gleichgewichtsprozesse thermodynamisch zu bewerten und aus den Ergebnissen Schlussfolgerungen über die Wahrscheinlichkeit der Bildung chemischer Verbindungen zu ziehen.
Copyright: | © Veranstaltergemeinschaft Bilitewski-Faulstich-Urban |
Quelle: | 8. Fachtagung thermische Abfallbehandlung (März 2003) |
Seiten: | 14 |
Preis: | € 7,00 |
Autor: | Professor Dr.-Ing. habil. Manfred Born |
Diesen Fachartikel kaufen... (nach Kauf erscheint Ihr Warenkorb oben links) | |
Artikel weiterempfehlen | |
Artikel nach Login kommentieren |
Erfahrungen mit der Sicherheitstechnik/dem Explosionsschutz bei Vergärungs-/Biogasanlagen
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (12/2024)
Nach wie vor kommt es an Vergärungs- und Biogasanlagen zu Unfällen infolge von Explosionen, Bränden und Vergiftungen/Erstickungen, Abstürzen häufig auch mit erheblichen Personenschäden. Auf der anderen Seite wurden in den letzten Jahren eine Vielzahl von Rechtsnormen und von Regelwerken, Technischen Regeln sowie Merkblättern zum Thema Sicherheitstechnik veröffentlicht.
Biogene Abfälle und Reststoffe - Kohlenstoffquelle, Bioenergie und negative Emissionen
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (12/2024)
Deutschlands Ziel ist es, bis 2045 klimaneutral zu werden. Eine der Grundvoraussetzungen hierfür ist, den Material- und Energieverbrauch erheblich nachhaltiger aufzustellen, denn die angestrebte Klimaneutralität beinhaltet zwei wesentliche Standbeine: Zum einen die Umstellung der Energieversorgung vollständig auf Erneuerbare Energien (EE).
Materialeffizienz und Umweltauswirkungen der Kunststoffverpackungsabfallwirtschaft in Deutschland
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (12/2024)
Im vorliegenden Beitrag werden die Ergebnisse einer umfassenden Bewertung des Bewirtschaftungssystems für Kunststoffverpackungsabfälle in Deutschland in Bezug auf Materialflüsse, Materialeffizienz und Umweltauswirkungen dargestellt und auf dieser Grundlage Herausforderungen und Optimierungsstrategien für die aktuelle und zukünftige Bewirtschaftung von Kunststoffverpackungsabfällen diskutiert.