Wasserpflanzen als Substrat für Biogasanlagen - praxisgerechte Silierung und Vergärung

Da Wasserpflanzen aufgrund des hohen Wassergehaltes schlecht in der Kompostierung eingesetzt werden können, bietet sich die energetische Verwertung des Pflanzenmaterials über Biogasanlagen an. Erste Studien belegen, dass Wasserpflanzen hohe Biogaserträge bezogen auf den Trockensubstanzgehalt liefern.

Ein Arbeitsschwerpunkt des vom Bundesministerium für Ernährung und Landwirtschaft (BMEL) über die Fachagentur Nachwachsende Rohstoffe (FNR) geförderten Forschungsprojektes 'Aquatische Makrophyten - ökologisch und ökonomisch optimierte Nutzung (AquaMak FKZ 22403013)' ist die Verbesserung der Lagerfähigkeit von Wasserpflanzen als Substrat für Biogasanlagen. Die ganzjährige Nutzung aquatischer Biomasse als Rohstoff für die energetische Verwertung macht in winterkalten Klimaregionen eine Haltbarmachung des Substrates erforderlich. Am Beispiel der Wasserpflanze Elodea nuttallii (Wasserpest) ist die Silierung als Konservierungsmethode eingehend untersucht worden.

Neben der praxisgerechten Haltbarmachung stand das Biogasbildungspotential der Silage im Vordergrund. Im Ergebnis wurde festgestellt, dass eine verlustarme Langzeitlagerung von Elodea unter Luftabschluss möglich ist und hohe Biogasbildungspotentiale erzielt werden können. Aufgrund des hohen Wassergehaltes ist die Silierung von Wasserpflanzenmaterial unter Praxisbedingungen allerdings nur schwer realisierbar. Als Lösungsansatz ist die Silierung von Elodea-Wasserpflanzen als in Mischung mit Getreidestroh getestet worden. Unvermischte Wasserpflanzen und Stroh wurden als Referenz ebenfalls untersucht. Die Silierversuche zeigten, dass diese Mischsilage über mehr als sechs Monate lagerfähig ist und ein hohes Biogasbildungspotential aufweist (66 % bis 86 % von Maissilage, bezogen auf die oTS). Als weiteres Ergebnis zeigte sich neben den guten Gasbildungspotentialen der Elodea, dass die zielgerichtete Silierung von Stroh ein Vorbehandlungsverfahren ist, das zueiner deutlichen Steigerung des Gasertrags gegenüber der trockenen Strohprobe führt.



Copyright: © Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock
Quelle: 10. Rostocker Bioenergieforum (Juni 2016)
Seiten: 7
Preis: € 3,50
Autor: Harald Wedwitschka
Dr. Walter Stinner
Dr.-Ing. Lucie Moeller
Sandra Roth
Vasco Brummer
 
 Diesen Fachartikel kaufen...
(nach Kauf erscheint Ihr Warenkorb oben links)
 Artikel weiterempfehlen
 Artikel nach Login kommentieren



Diese Fachartikel könnten Sie auch interessieren:

LNG-Beschleunigungsgesetz als Blaupause?
© Lexxion Verlagsgesellschaft mbH (6/2023)
Terminals zurRegasifizierung von Flüssigerdgas, auch LNGTerminals genannt, machen seit gut einem Jahr in Deutschland (wieder) Schlagzeilen. LNG steht für 'Liquified Natural Gas' - zu Deutsch Flüssigerdgas, also Erdgas, das auf - 162°C heruntergekühlt wird. Das Flüssigerdgas ist gut transportfähig, da das Volumen dabei im Vergleich zum gasförmigen Zustand um das Sechshundertfache reduziert wird. LNG hat den Vorteil, dass es ohne Pipelines, mithilfe von Schiffen, nach Deutschland transportiert werden kann.Mit LNG-Terminals kann das LNG zurück in Erdgas umgewandelt werden.

Kleinbiogasanlagen: Für eine circular economy mit kurzen Wegen und hochwertiger stofflicher Nutzung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Nach einer Hochphase der NaWaRo-Biogasanlagen stagnieren diese zunehmend und es kann beobachtet werden, dass immer mehr Biogasanlagen gebaut werden, die mit biogenen Abfällen betrieben werden. Aktuell gibt es in Europa über 1.000 Bioabfallbiogasanlagen, die i.d.R auf 50- 350 to/Tag ausgelegt sind.

Die erste industrielle Power-to-Gas-Anlage der Schweiz
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2022)
Dank der Power-to-Gas-Technologie ist es möglich, saisonal und zeitlich bedingte Überschüsse aus dieser Stromproduktion in Gas umzuwandeln und damit speicher und transportierbar zu machen. Das macht die Power-to-Gas-Technologie zu einem wichtigen Faktor der Energiewende und führt zu höherer Energiesicherheit und -unabhängigkeit.

Die Rolle von Biogas für eine sichere Gasversorgung in Deutschland
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (11/2022)
Vor dem Hintergrund des Krieges in der Ukraine und der Gasmangellage nimmt auch die Aufmerksamkeit für Biogas zu. Sowohl gegenwärtige als auch zukünftige Potenziale können allerdings nur sehr begrenzt zur Unabhängigkeit von russischem Erdgas beitragen. Aus Biogas gewonnenes Biomethan, das Erdgas in allen Anwendungen ersetzen kann, hat derzeit einen Anteil am Gasmarkt von etwa 1 %. Dieser Anteil kann bis 2030 auf etwa 3 % ausgeweitet werden. Darüber hinaus kann Biogas russisches Erdgas in begrenztem Maße durch die Bereitstellung von Wärme und flexibel erzeugtem Strom ersetzen. Um diese Beiträge zur Energieversorgungssicherheit zu sichern und auszubauen, sollte vor allem die Substratbasis von Energiepflanzen stärker auf biogene Reststoffe und Abfälle umgestellt werden. Darüber hinaus können zusätzliche Anreize für eine weitergehende Flexibilisierung der Stromerzeugung aus Biogas sinnvoll sein.

Produktion von Mikroalgen unter Nutzung von Abfällen aus Biogasanlagen
© Springer Vieweg | Springer Fachmedien Wiesbaden GmbH (12/2020)
Die Koppelung landwirtschaftlicher Biogasanlagen mit einer Mikroalgenproduktion führt zu einer energie- und klimaeffizienten Nutzung von Abfällen, nämlich Abwärme und AbCO2 aus der Verstromung des Methans im Blockheizkraftwerk. Hinzu kommt, dass keine Teller-Tank-Diskussion zu führen ist, da die Mikroalgenproduktion auch auf devastierten Flächen oder Dächern erfolgen kann. Die Mikroalge Spirulina bietet als nachhaltiges Nahrungs- und Futterergänzungsmittel vielseitige Einsatzzwecke und deutliche ernährungsphysiologische Vorteile.

Login

Literaturtip:
 
zu www.energiefachbuchhandel.de
 

Innovationen
im Bereich Biogas
präsentiert von:
 

und: